Awesome
BERT-unsupervised-OOD
Code for ACL 2021 paper "Unsupervised Out-of-Domain Detection via Pre-trained Transformers" by Keyang Xu, Tongzheng Ren, Shikun Zhang, Yihao Feng and Caiming Xiong. (https://arxiv.org/pdf/2106.00948.pdf)
Requirements
- Python 3.7.3
- PyTorch 1.2
- Transformers 2.7.0
- simpletransformers 0.22.1
I do notice this repo is not compatabile with the newest version of Transformers (4.6.1) and simpletransformers (0.61.6). I will try to address this issue in a new branch if requested.
Overview
To run the models
Use the command
python ood_main.py \
--method MDF \
--data_type clinic \
--model_class bert
To run baselines, change MDF to one from single_layer_bert
, tf-idf
and MSP
(should load a BCAD mdoel).
Fine-tuning BERT with BCAD and IMLM
In-domain Masked Language Model (IMLM)
python finetune_bert.py \
--type finetune_imlm \
--data_type clinic \
--model_class bert
Binary classification with auxiliary dataset (BCAD)
python finetune_bert.py \
--type finetune_binary \
--data_type clinic \
--model_class bert
--load_path xxx
The load_path
can be the output of IMLM fine-tuning. If no load_path
is specified, then pre-trained bert model is used.
You can use the fine-tuned model for OOD detection by adding the load_path
parameter, e.g.,
python ood_main.py \
--method MDF \
--data_type clinic \
--model_class roberta \
--load_path ./models/roberta_clinic_ft_IMLM_BCAD
You can also downloaded our fine-tuned (Ro)BERT(a) (IMLM+BCAD) models for SST and CLINIC150 here.
Citations
@inproceedings{xu-etal-2021-unsupervised,
title = "Unsupervised Out-of-Domain Detection via Pre-trained Transformers",
author = "Xu, Keyang and Ren, Tongzheng and Zhang, Shikun and Feng, Yihao and Xiong, Caiming",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.85",
doi = "10.18653/v1/2021.acl-long.85",
pages = "1052--1061",
}