Awesome
Code for the paper Addressing Model Vulnerability to Distributional Shifts over Image Transformation Sets
Overview
The code in this repo allows
-
Testing the vulnerability of (black-box) models via random search and evolution search over arbitrary transformation sets.
-
Training more robust models via the RDA/RSDA/ESDA algorithms presented in the paper.
Here a small ConvNet and the MNIST dataset are used, but applying these tools to arbitrary tasks/models is straightforward. Feel free to drop me a message if any feedback can be helpful.
Files
model.py
: to build tf's graph
train_ops.py
: train/test functions
search_ops.py
: search algos (RS/ES from the paper)
transformations_ops.py
: modules to build image transformation set and apply transformations
exp_config
: config file with the hyperparameters
Some pretrained models are included in the ''pretrained-models'' folder, with the associated exp_config
files.
Prerequisites
Python 2.7, Tensorflow 1.12.0
How it works
To obtain MNIST and SVHN dataset, run
mkdir data
python download_and_process_mnist.py
sh download_svhn.sh
To train the model, run
python main.py --mode=train_MODE --gpu=GPU_IDX --exp_dir=EXP_DIR
where MODE can be one of {ERM, RDA, RSDA, ESDA}, GPU_IDX is the index of the GPU to be used, and EXP_DIR is the folder containing the exp_config file.
To run evolution search (ES) or random search (RS) on a trained model, run
python main.py --mode=test_MODE --gpu=GPU_IDX --exp_dir=EXP_DIR
where MODE can be one of {RS, ES}. For ES, population size POP_SIZE and mutation rate ETA can be set as
python main.py --mode=test_ES --gpu=GPU_IDX --exp_dir=EXP_DIR --pop_size=POP_SIZE --mutation_rate=ETA
To test performance on all digit datasets (MNIST, SVHN, MNIST-M, SYN, USPS), run
python main.py --mode=test_all --gpu=GPU_IDX --exp_dir=EXP_DIR
Testing MNIST-M, SYN and USPS is commented out.
If one desires to include more transformations, or explore different intensity intervals, modifications to transformations_ops.py should be straightforward.
Reference
Addressing Model Vulnerability to Distributional Shifts over Image Transformation Sets
Riccardo Volpi and Vittorio Murino, ICCV 2019
@InProceedings{Volpi_2019_ICCV,
author = {Volpi, Riccardo and Murino, Vittorio},
title = {Addressing Model Vulnerability to Distributional Shifts Over Image Transformation Sets},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}