Home

Awesome

OTBTF: Orfeo ToolBox meets TensorFlow

<p align="center"> <img src="doc/images/logo.png" width="160px"> <br> <a href="https://forgemia.inra.fr/orfeo-toolbox/otbtf/-/releases"> <img src="https://forgemia.inra.fr/orfeo-toolbox/otbtf/-/badges/release.svg"> </a> <a href="https://forgemia.inra.fr/orfeo-toolbox/otbtf/-/commits/master"> <img src="https://forgemia.inra.fr/orfeo-toolbox/otbtf/badges/master/pipeline.svg"> </a> <img src='https://readthedocs.org/projects/otbtf/badge/?version=latest' alt='Documentation Status' /> <a href="LICENSE"> <img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg"> </a> <img src="https://img.shields.io/badge/dynamic/json?formatter=metric&color=blue&label=Docker%20pull&query=%24.pull_count&url=https://hub.docker.com/v2/repositories/mdl4eo/otbtf"> </p>

OTBTF is a remote module of the Orfeo ToolBox. It provides a generic, multi-purpose deep learning framework, targeting remote sensing images processing. It contains a set of new process objects for OTB that internally invoke Tensorflow, and new OTB applications to perform deep learning with real-world remote sensing images. Applications can be used to build OTB pipelines from Python or C++ APIs. OTBTF also includes a python API to build quickly Keras compliant models suited for remote sensing imagery, easy to train in distributed environments.

Documentation

The documentation is available on otbtf.readthedocs.io.

Use

You can use our latest GPU enabled docker images.

docker run --runtime=nvidia -ti mdl4eo/otbtf:latest-gpu otbcli_PatchesExtraction
docker run --runtime=nvidia -ti mdl4eo/otbtf:latest-gpu python -c "import otbtf"

You can also build OTBTF from sources (see the documentation)

Cite

@article{cresson2018framework,
  title={A framework for remote sensing images processing using deep learning techniques},
  author={Cresson, R{\'e}mi},
  journal={IEEE Geoscience and Remote Sensing Letters},
  volume={16},
  number={1},
  pages={25--29},
  year={2018},
  publisher={IEEE}
}