Awesome
LRA-IGLOO
Expected results
ListOps | Text-IMDB | Retrieval | Image-cifar10 | Path | Avg | |
---|---|---|---|---|---|---|
Text Accuracy | 39 | 84.5 | 75.5 | 47 | 76.5 | 64.5 |
Params baseline | 19.9M | 3.5M | 1.087k | 380k | 446k | |
Params IGLOO | 18.3M | 3.50M | 1.145k | 132k | 440k |
Those are the results one is expected to find using IGLOO on the Long Range Arena suite of benchmarks.
@inproceedings{
tay2020long,
title={Long Range Arena : A Benchmark for Efficient Transformers },
author={Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri,
Philip Pham, Jinfeng Rao, Liu Yang, Sebastian Ruder, Donald Metzler},
booktitle={ArXiv Preprint},
year={2020},
url={},
note={under review}
}
Prerequisites
Tensorflow 2.0.0
Tensorflow-datasets 2.0.0
Numpy
Building
To install the prerequisites.
$ pip install -r requirements.txt
Running
$ python longrangearena_cifar10.py
$ python longrangearena_imdb.py
$ python longrangearena_matching.py
$ python pathfinder/longrangearena_pathfinder.py
$ python lra_listops/longrangearena_listops.py