Awesome
Robot Control Gestures (RoCoG-v2)
This repository provides access to the RoCoG-v2 gesture recognition dataset introduced in the ICRA 2023 paper "Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances."
RoCoG-v2 (Robot Control Gestures) is a dataset intended to support the study of synthetic-to-real and ground-to-air video domain adaptation. It contains over 100K synthetically-generated videos of human avatars performing gestures from seven (7) classes. It also provides videos of real humans performing the same gestures from both ground and air perspectives.
<p align="center"> <img src="https://user-images.githubusercontent.com/72093042/194117338-880d9ff2-4c5a-4731-9742-9cb32744f841.gif" width="500" align="center"/> </p> <p align="center"> <img alt="rocog_gestures" src="https://user-images.githubusercontent.com/72093042/224433804-bc7e1561-9433-47da-936f-eb67198458b3.png" width="850"> </p>Downloading the Dataset
All of the data for RoCoG-v2 can be found here. Each type of data is provided in a separate zip file.
You may download the data through the browser or using the following command:
wget https://www.cis.jhu.edu/~rocog/data/<FILENAME>
Replace <FILENAME> in the above command with a filename from the table below corresponding to the data type you wish to download.
Filename | Description |
---|---|
syn_ground.zip | Synthetic videos rendered from the ground perspective |
syn_air.zip | Synthetic videos rendered from the air perspective (static hover) |
syn_orbital.zip* | Synthetic videos rendered from the air perspective (orbiting the subject) |
real_ground.zip | Real cropped videos collected from the ground perspective |
real_air.zip | Real cropped videos collected from the air perspective |
real_uncropped.zip | Uncropped versions of the real ground and air videos |
* Our paper does not provide experimental results with this data type.
Dataset Details
Number of Videos across Splits
Data Type | View | Train | Test | Total |
---|---|---|---|---|
Synthetic | Ground | 53,438 | - | 53,438 |
Synthetic | Air | 53,558 | - | 53,558 |
Real | Ground | 204 | 100 | 304 |
Real | Air | 87 | 91 | 178 |
Dataset Directory Structure
.
├── annotations
├── real
│ ├── air
│ │ ├── Advance
│ │ ├── Attention
│ │ ├── FollowMe
│ │ ├── Halt
│ │ ├── MoveForward
│ │ ├── MoveInReverse
│ │ └── Rally
│ └── ground
│ ├── Advance
│ ├── Attention
│ ├── FollowMe
│ ├── Halt
│ ├── MoveForward
│ ├── MoveInReverse
│ └── Rally
└── syn
├── air
│ ├── Advance
│ ├── Attention
│ ├── FollowMe
│ ├── Halt
│ ├── MoveForward
│ ├── MoveInReverse
│ └── Rally
└── ground
├── Advance
├── Attention
├── FollowMe
├── Halt
├── MoveForward
├── MoveInReverse
└── Rally
Citation
If you use this dataset in your work, please cite our ICRA 2023 paper:
bibtex
@inproceedings{2023rocogv2,
title={Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances},
author={Reddy, Arun V and Shah, Ketul and Paul, William and Mocharla, Rohita and Hoffman, Judy and Katyal, Kapil D and Manocha, Dinesh and de Melo, Celso M and Chellappa, Rama},
booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
pages={},
year={2023},
organization={IEEE}
}
APA
Reddy, A. V., Shah, K., Paul, W., Mocharla, R., Hoffman, J., Katyal, K. D., Manocha, D., de Melo, C. M., & Chellappa, R. (2023). Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances. IEEE International Conference on Robotics and Automation (ICRA).
IEEE
A. V. Reddy et al., “Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances,” in IEEE International Conference on Robotics and Automation (ICRA), 2023.