Awesome
Sequential GCN for Active Learning
Please cite if using the code: Link to paper.
Requirements:
python 3.6+
torch 1.0+
pip libraries: tqdm, sklearn, scipy, math
Run:
For running UncertainGCN on CIFAR-10 over 5 sampling stages of 1000 images:
python main.py -m UncertainGCN -d cifar10 -c 5 # Other available datasets cifar100, fashionmnist, svhn
CoreGCN, the geometric method that uses GCN training, can be run as:
python main.py -m CoreGCN -d cifar10 -c 5 # Other AL methods: Random, VAAL, CoreSet, lloss
Please have a look over the config file before running. Also, check the args of the code. CUDA-GPU implementation, not tested on CPU. Different random seed might produce different results.
Active Learning methods implemented:
Active Learning for Convolutional Neural Networks: A Core-Set Approach: https://arxiv.org/pdf/1708.00489.pdf [CoreSet]
Learning Loss for Active Learning: https://arxiv.org/pdf/1905.03677.pdf [lloss]
Variational Adversial Active Learning: https://arxiv.org/pdf/1904.00370.pdf [VAAL]
Contact
If there are any questions or concerns feel free to send a message at: r.caramalau18@imperial.ac.uk