Awesome
data2text-entity-py
This repo contains code for Data-to-text Generation with Entity Modeling (Puduppully, R., Dong, L., & Lapata, M.; ACL 2019); this code is based on an earlier release (0.1) of OpenNMT-py. The Pytorch version is 0.3.1.
Citation
@inproceedings{puduppully-etal-2019-data,
title = "Data-to-text Generation with Entity Modeling",
author = "Puduppully, Ratish and
Dong, Li and
Lapata, Mirella",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1195",
doi = "10.18653/v1/P19-1195",
pages = "2023--2035"
}
Requirements
All dependencies can be installed via:
pip install -r requirements.txt
Note that the Pytorch version is 0.3.1 and Python version is 2.7.
The path to Pytorch wheel in requirements.txt
is configured with CUDA 8.0. You may change it to the desired CUDA version.
MLB
The code for training with MLB dataset will be soon is available on branch mlb
.
Scripts to create the MLB dataset are available at mlb-data-scripts.
Dataset
The boxscore-data json files can be downloaded from the boxscore-data repo.
The input dataset for data2text-plan-py can be created by running the script create_dataset.py
in scripts
folder.
The dataset so obtained is available at link https://drive.google.com/open?id=1GvFBVvOa2YPy_X9aJ6KYLoz_CnqZN796
Preprocessing
Assuming the OpenNMT-py input files reside at ~/boxscore-data
, the following command will preprocess the data
BASE=~/boxscore-data
mkdir $BASE/entity_preprocess
python preprocess.py -train_src $BASE/rotowire/src_train.txt -train_tgt $BASE/rotowire/tgt_train.txt -valid_src $BASE/rotowire/src_valid.txt -valid_tgt $BASE/rotowire/tgt_valid.txt -save_data $BASE/entity_preprocess/roto -src_seq_length 1000 -tgt_seq_length 1000 -dynamic_dict
Training (and Downloading Trained Models)
The command for training the Entity model is as follows:
BASE=~/boxscore-data
IDENTIFIER=cc
GPUID=0
python train.py -data $BASE/entity_preprocess/roto -save_model $BASE/gen_model/$IDENTIFIER/roto -encoder_type mean -input_feed 1 -layers 2 -batch_size 5 -feat_merge mlp -seed 1234 -report_every 100 -gpuid $GPUID -start_checkpoint_at 4 -epochs 25 -copy_attn -truncated_decoder 100 -feat_vec_size 600 -word_vec_size 600 -rnn_size 600 -optim adagrad -learning_rate 0.15 -adagrad_accumulator_init 0.1 -reuse_copy_attn -start_decay_at 4 -learning_rate_decay 0.97 -entity_memory_size 300 -valid_batch_size 5
The Entity model can be downloaded from https://drive.google.com/open?id=1vOGtTty57QJqjWAfW1tw0P2gHhpCUBAY
Generation
During inference, we execute the following command:
MODEL_PATH=<path to model>
python translate.py -model $MODEL_PATH -src $BASE/rotowire/src_valid.txt -output $BASE/gen/roto_$IDENTIFIER-beam5_gens.txt -batch_size 5 -max_length 850 -min_length 150 -gpu $GPUID
Automatic evaluation using IE metrics
Metrics of RG, CS, CO are computed using the below commands.
python data_utils.py -mode prep_gen_data -gen_fi $BASE/gen/roto_$IDENTIFIER-beam5_gens.txt -dict_pfx "roto-ie" -output_fi $BASE/transform_gen/roto_$IDENTIFIER-beam5_gens.h5 -input_path "/boxcore-json/rotowire"
th extractor.lua -gpuid $GPUID -datafile roto-ie.h5 -preddata $BASE/transform_gen/roto_$IDENTIFIER-beam5_gens.h5 -dict_pfx "roto-ie" -just_eval
python non_rg_metrics.py $BASE/transform_gen/roto-gold-val-beam5_gens.h5-tuples.txt $BASE/transform_gen/roto_$IDENTIFIER-beam5_gens.h5-tuples.txt
Evaluation using BLEU script
The BLEU perl script can be obtained from https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl Command to compute BLEU score:
~/multi-bleu.perl $BASE/rotowire/tgt_valid.txt < $BASE/gen/roto_$IDENTIFIER-beam5_gens.txt
IE models
For training the IE models, follow the updated code in https://github.com/ratishsp/data2text-1 which contains bug fixes for number handling. The repo contains the downloadable links for IE models too.