Awesome
Sample for Kafka tigger scaler with KEDA using Event Hubs Kafka
Quickstart for Kafka trigger scaler using Azure Event Hubs Kafka head to scale Java applications deployed on AKS which consumes the event hub messages.
Deploy AKS cluster
The Azure portal was used to deploy basic AKS service using instructions in the Azure docs.
# Create AKS cluster
az aks create \
--resource-group myResourceGroup \
--name myAKSCluster \
--node-count 1 \
--generate-ssh-keys
# Install Kubernetes CLI
az aks install-cli
# Connect to cluster using kubectl
az aks get-credentials --resource-group myResourceGroup --name myAKSCluster
# Verify connection to cluster
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
aks-nodepool1-12345678-0 Ready agent 32m v1.13.10
The resulting ARM template of this deployment is available as AKS-deployment-KEDA-ARMtemplate.zip for download.
Deploy KEDA on the AKS cluster
Detailed instructions for this are available here.
# Add KEDA Helm repo
helm repo add kedacore https://kedacore.github.io/charts
# Update KEDA Helm repo
helm repo update
# Install KEDA Helm chart for Helm 3
kubectl create namespace keda
helm install keda kedacore/keda --namespace keda
# Verify KEDA operator was deployed correctly
kubectl -n keda get pods
NAME READY STATUS RESTARTS AGE
keda-operator-576c5dfcdf-bjmtd 2/2 Running 0 42s
Create Event Hub to act as Scalar
Documentation for creating Event Hub can be found here. Make sure that Standard Tier is selected and Kafka is enabled.
# Create EventHub namespace
az eventhubs namespace create --name myEventHubNamespace \
--resource-group myResourceGroup \
--capacity 10 \
--enable-auto-inflate true \
--enable-kafka true \
--location EastUS \
--maximum-throughput-units 20 \
--sku Standard
# Create EventHub
az eventhubs eventhub create --name myEventHub \
--namespace-name myEventHubNamespace \
--resource-group myResourceGroup \
--partition-count 10
# Create ConsumerGroup
az eventhubs eventhub consumer-group create --eventhub-name myEventHub\
--name myConsumerGroup \
--namespace-name myEventHubNamespace\
--resource-group myResourceGroup
Store secrets in deploy-kafka-secret.yaml
Get EventHub ConnectionString
This can be obtained from the Azure portal or via commandline as shown below
az eventhubs namespace authorization-rule keys list --resource-group myResourceGroup --namespace-name myEventHubNamespace --name RootManageSharedAccessKey
Copy value of primaryConnectionString
Base64 encoding of secrets
All the secrets need to be base64 encoded as shown
echo -n "<eventhub_connectionstring>" | base64
Enter the base64 encoded Event Hub Connection String secret in the deploy-secret.yaml
file against the password
field.
Enter the other base64 encoded values against the corresponding fields in the deply-secret.yaml
file.
password: "<base64_encoded_eventhub_conmectionstring>"
eventhub_namespace: "<base64_encoded_eventhub_namespace>"
consumer_group: "<base64_encoded_consumer_group_name>"
eventhub_name: "<base64_encoded_eventhub_name>"
The other secrets in the deploy-secret.yaml
are already filled in for you. The authmode
is set to be base64 encoded string for sasl_ssl_plain
and the username
is set to be base64 encoded string for $ConnectionString
.
authMode: "c2FzbF9zc2xfcGxhaW4="
username: "JENvbm5lY3Rpb25TdHJpbmc="
Build and Dockerize JAVA application
The Java application can be built independently with running below command from the root directory of this repo
mvn clean package
Verify that the Dockerfile
has the right path for target
# Create docker image for Java producer application
docker build -t <tag_name> .
Create ACR to store docker image
# Create ACR
az acr create --resource-group MyResourceGroup --name myacr --sku Basic
# Merge AKS cluster to current context
az aks get-credentials --name myAKSCluster --resource-group MyResourceGroup
# Integrate ACR to existing AKS cluster
az aks update -n myAKSCluster -g MyResourceGroup --attach-acr myacr
Upload docker image to ACR
# Login to ACR
az acr login --name myacr
# Get ACR server name
az acr list --resource-group MyResourceGroup --query "[].{acrLoginServer:loginServer}" --output table
>AcrLoginServer
------------------
myacr.azurecr.io
# Tag docker image to created ACR
docker tag <image_tag> myacr.azurecr.io/<image_tag>
# Publish docker image to created ACR
docker push myacr.azurecr.io/<image_tag>
Update deploy-kafka-scalar.yaml
Update deployment image details
Update the Deployment container spec with the image name obtained from previous step in the deploy-kafka-scalar.yaml
file.
spec:
containers:
- name: kedaconsumer
image: myacr.azurecr.io/<image_tag>
env:
Update ScaledObject metadata
The Kafka trigger needs some metadata to make sure it is scaling the pods based on the right details. These details are provided as a part of metadata in the ScaledObject
deployment yaml.
Open the deploy-kafka-scalar.yaml
file and replace the <EVENTHUB_NAMESPACE>
, <CONSUMER_GROUP>
and <EVENTHUB_NAME>
with the actual values in plain text:
metadata:
# Required
brokerList: <EVENTHUB_NAMESPACE>.servicebus.windows.net:9093
consumerGroup: <CONSUMER_GROUP> # Make sure that this consumer group name is the same one as the one that is consuming topics
topic: <EVENTHUB_NAME>
lagThreshold: "50"
Deploy secrets and application to AKS
# Deploy secrets
kubectl apply -f deploy-secret.yaml
> secret/keda-kafka-secrets created
Make sure that the image name and tag in the deploy-kafka-scalar.yaml
file matches the docker image pushed to ACR in the previous section
# Deploy Java application as Deployment and ScaledObject details
kubectl apply -f deploy-kafka-scalar.yaml
> deployment.apps/kedaconsumer created
> triggerauthentication.keda.k8s.io/keda-trigger-auth-kafka-credential created
> scaledobject.keda.k8s.io/kafka-scaledobject created
Verify deployment
# Get pods -n keda
kubectl get pods -n keda
NAME READY STATUS RESTARTS AGE
keda-operator-657c678b64-6p8hw 2/2 Running 0 26h
# Get deployment
# Since there are no messages in the Event Hub, the kedaconsumer has no pods allocated
kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
kedaconsumer 0/0 0 0 109m
# Get deployment -n keda
kubectl get deployment -n keda
NAME READY UP-TO-DATE AVAILABLE AGE
keda-operator 1/1 1 1 25h
# Verify HPA is deployed
kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
keda-hpa-kedaconsumer Deployment/kedaconsumer <unknown>/50 (avg) 1 100 0 117m
Sending messages to Event Hub to test pod autoscaling
For this, you can execute your own producer sending a messages so that they exceed the lag threshold that was set in the deply-kafka-scalar.yaml
file in order to see the pods scale up.
The producer sample given in the producer
folder can also be used to send messages.
Using given producer sample
Prerequisites
- Java Development Kit (JDK) 1.7+
- On Ubuntu, run
apt-get install default-jdk
to install the JDK. - Be sure to set the JAVA_HOME environment variable to point to the folder where the JDK is installed.
- On Ubuntu, run
- Download and install a Maven binary archive
- On Ubuntu, you can run
apt-get install maven
to install Maven.
- On Ubuntu, you can run
Update configs
Modify the producer/src/main/resources/producer.config
file with the Event Hub namespace and Event Hub ConnectionString values:
bootstrap.servers=<EVENTHUB_NAMESPACE>.servicebus.windows.net:9093
security.protocol=SASL_SSL
sasl.mechanism=PLAIN
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username="$ConnectionString" password="<EVENTHUB_CONNECTIONSTRING>";
Also make sure that the <EVENTHUB_NAME>
is replaced with the right value in the producer/src/main/java/TestProducer.java
file.
Run the producer
To run the producer from the command line, generate the JAR and then run from within Maven (alternatively, generate the JAR using Maven, then run in Java by adding the necessary Kafka JAR(s) to the classpath):
# Run these commands from the producer directory
mvn clean package
mvn exec:java -Dexec.mainClass="TestProducer"
The producer will now begin sending events to the Kafka-enabled Event Hub at topic you chose and printing the events to stdout.
Expected outcome
Once you let the producer run for a couple of seconds, you should start seeing the HPA scale out the number of pods. Ideally, depending on the number of messages being sent, the number of pods should not be greater than the number of partitions on the Event Hub.
# Get HPA
kubectl get hpa -w
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
keda-hpa-kedaconsumer Deployment/kedaconsumer <unknown>/50 (avg) 1 100 0 30m
keda-hpa-kedaconsumer Deployment/kedaconsumer <unknown>/50 (avg) 1 100 1 30m
keda-hpa-kedaconsumer Deployment/kedaconsumer 236/50 (avg) 1 100 1 31m
keda-hpa-kedaconsumer Deployment/kedaconsumer 50250m/50 (avg) 1 100 4 31m
keda-hpa-kedaconsumer Deployment/kedaconsumer 40/50 (avg) 1 100 5 31m
keda-hpa-kedaconsumer Deployment/kedaconsumer 25200m/50 (avg) 1 100 5 33m
keda-hpa-kedaconsumer Deployment/kedaconsumer 42800m/50 (avg) 1 100 5 33m
keda-hpa-kedaconsumer Deployment/kedaconsumer 40/50 (avg) 1 100 5 33m
keda-hpa-kedaconsumer Deployment/kedaconsumer 0/50 (avg) 1 100 5 34m
keda-hpa-kedaconsumer Deployment/kedaconsumer <unknown>/50 (avg) 1 100 0 38m
# Get pods
kubectl get pods
NAME READY STATUS RESTARTS AGE
kedaconsumer-57f88dc9c8-6stzx 1/1 Running 0 8s
kedaconsumer-57f88dc9c8-9fs5q 1/1 Running 0 7s
kedaconsumer-57f88dc9c8-jkt6f 1/1 Running 0 7s
kedaconsumer-57f88dc9c8-vtr5m 1/1 Running 0 7s
kedaconsumer-57f88dc9c8-hdw78 1/1 Running 0 7s