Awesome
Multi-Image Super-Resolution for Remote Sensing using Deep RecurrentNetworks
Pytorch implementation of MISR-GRU, a deep neural network for multi image super-resolution (MISR), for ProbaV Super Resolution Competition European Space Agency's Kelvin competition.
MISR-GRU Architecture
*** Trained model is available to download (https://github.com/rarefin/MISR-GRU/blob/master/resources/MISR-GRU.pth)
Example of Super Resolution
A recipe to enhance the vision of the ESA satellite Proba-V
0. Setup python environment
- Setup a python environment and install dependencies, we need python version >= 3.6.8
pip install -r requirements.txt
1. Download data and save clearance
-
Download the data from the Kelvin Competition and unzip it
-
Run the save_clearance script to pre-compute clearance scores for low-res views
python save_clearance.py --data_dir /path/to/ESA_data
2. Train model
- Train a model with default config
python train.py --config_file_path ../config.json
3. Test model - Create Submission file
- Train a model with default config
python create_submission_file.py --config_file_path ../config.json
3. Submit result and check performance
Although comepetetion is over but model performance PROBA-V Super Resolution post mortem
Authors
Md Rifat Arefin, Samira E. Kahou, Vincent Michalski Alfredo Kalaitzis