Awesome
Skeleton-DML
This repository contains the source code to reproduce the results from the Skeleton-DML paper. A pre-print can be found on arxiv.
Video Abstract
<!--[Video](https://userpages.uni-koblenz.de/~raphael/videos/sl-dml.mp4)--> <!--## Citation--> <!--```--> <!--@article{memmesheimer2020signal,--> <!--title={Signal Level Deep Metric Learning for Multimodal One-Shot Action Recognition},--> <!--author={Memmesheimer, Raphael and Theisen, Nick and Paulus, Dietrich},--> <!--journal={arXiv preprint arXiv:2004.11085},--> <!--year={2020}--> <!--}--> <!--```-->Requirements
<!--* `pip install -r requirements.txt`-->- Skeleton-DML is based on the pytorch-metric-learning library
Precalculated Representations
We provide precalculated representations for all conducted experiment splits of the Skeleton-DML representation:
Quick Start
git clone https://github.com/raphaelmemmesheimer/skeleton-dml
cd skeleton-dml
pip install -r requirements.txt
export DATASET_FOLDER="$(pwd)/data"
mkdir -p data/ntu/
wget https://agas.uni-koblenz.de/skeleton-dml/skeleton-dml-ntu_120_one_shot.zip
unzip skeleton-dml-ntu_120_one_shot.zip -d $DATASET_FOLDER/ntu/ntu_reindex
python train.py dataset=ntu_reindex
when returning you have to set the dataset folder again:
export DATASET_FOLDER="$(pwd)/data"
python train.py dataset=ntu_reindex
Note, the following commands require an environment variable $DATASET_FOLDER
to be existing.
Training for the NTU 120 one-shot action recognition experiments can be executed like:
python train.py dataset=ntu_reindex
During development, we suggest using the classes A002, A008, A014, A020, A026, A032, A038, A044, A050, A056, A062, A068, A074, A080, A086, A092, A098, A104, A110, A116
as validation classes.