Home

Awesome

GEONE

Documentation Status

GEONE is a Python3 package providing a set of tools for geostatistical modeling, including:

Documentation, examples and references

The documentation of GEONE is on https://geone.readthedocs.io.

<!-- The notebooks (examples) from the documentation are available in [docs/source/notebooks](./docs/source/notebooks). -->

The notebooks (examples) from the documentation are available in docs/source/notebooks.

Installation

GEONE relies on pre-compiled C libraries (DEESSE and GEOSCLASSIC core)

GEONE is available:

Installation from PyPI

In a terminal type

pip install geone

Or, equivalently: python -m pip install geone.

Installation from the Github repository

In a terminal, change directory where to download GEONE, and type

git clone https://github.com/randlab/geone.git
cd geone
pip install .

Note: use pip install . --verbose or pip install . -v for printing (more) messages during the installation.

Alternatively:

Warning - Using GEONE

If the installation has been done from github, do not launch python from the directory containing the downloaded sources and where the installation has been done (with pip), otherwise import geone will fail.

Requirements

The following python packages are used by GEONE (tested on python 3.11.5):

Warning

numpy version less than 2. is required

Removing GEONE

In a terminal type

pip uninstall -y geone

Note: First remove the directory 'geone.egg-info' from the current directory (if present).

<!-- ## References ### Some references about DEESSE - J. Straubhaar, P. Renard (2021) Conditioning Multiple-Point Statistics Simulation to Inequality Data. Earth and Space Science, [doi:10.1029/2020EA001515](https://dx.doi.org/10.1029/2020EA001515) - J. Straubhaar, P. Renard, T. Chugunova (2020) Multiple-point statistics using multi-resolution images. Stochastic Environmental Research and Risk Assessment 20, 251-273, [doi:10.1007/s00477-020-01770-8](https://dx.doi.org/10.1007/s00477-020-01770-8) - J. Straubhaar, P. Renard, G. Mariethoz (2016) Conditioning multiple-point statistics simulations to block data. Spatial Statistics 16, 53-71, [doi:10.1016/j.spasta.2016.02.005](https://dx.doi.org/10.1016/j.spasta.2016.02.005) - G. Mariethoz, J. Straubhaar, P. Renard, T. Chugunova, P. Biver (2015) Constraining distance-based multipoint simulations to proportions and trends. Environmental Modelling & Software 72, 184-197, [doi:10.1016/j.envsoft.2015.07.007](https://dx.doi.org/10.1016/j.envsoft.2015.07.007) - G. Mariethoz, P. Renard, J. Straubhaar (2010) The Direct Sampling method to perform multiple-point geostatistical simulation. Water Resources Research 46, W11536, [doi:10.1029/2008WR007621](https://dx.doi.org/10.1029/2008WR007621) ### Reference about DEESSEX - A. Comunian, P. Renard, J. Straubhaar (2012) 3D multiple-point statistics simulation using 2D training images. Computers & Geosciences 40, 49-65, [doi:10.1016/j.cageo.2011.07.009](https://dx.doi.org/10.1016/j.cageo.2011.07.009) ### Some references about GRF - J. W. Cooley and J. W. Tukey (1965) An algorithm for machine calculation of complex fourier series. Mathematics of Computation 19(90):297-301, [doi:10.2307/2003354](https://dx.doi.org/10.2307/2003354) - C. R. Dietrich and G. N. Newsam (1993) A fast and exact method for multidimensional gaussian stochastic simulations. Water Resources Research 29(8):2861-2869, [doi:10.1029/93WR01070](https://dx.doi.org/10.1029/93WR01070) - A. T. A. Wood and G. Chan (1994) Simulation of stationary gaussian processes in [0,1]^d. Journal of Computational and Graphical Statistics 3(4):409-432, [doi:10.2307/1390903](https://dx.doi.org/10.2307/1390903) ### Other references - C. Lantuéjoul (2002) Geostatistical Simulation, Models and Algorithms. Springer Verlag, Berlin, 256 p. - P. Renard, D. Allard (2013), Connectivity metrics for subsurface flow and transport. Advances in Water Resources 51:168-196, `doi:10.1016/j.advwatres.2011.12.001 <https://doi.org/10.1016/j.advwatres.2011.12.001>`_ - J. Straubhaar, P. Renard (2024), Exploring substitution random functions composed of stationary multi-Gaussian processes. Stochastic Environmental Research and Risk Assessment, `doi:10.1007/s00477-024-02662-x <https://doi.org/10.1007/s00477-024-02662-x>`_ -->

License

<!-- See [LICENSE](LICENSE) file. --> <!-- See [LICENSE](https://geone.readthedocs.io/en/latest/LICENSE.html) file. -->

See LICENSE file.

Authors

GEONE is developed by Julien Straubhaar and Philippe Renard.