Awesome
CXR-RePaiR: Retrieval-Based Chest X-Ray Report Generation Using a Pre-trained Contrastive Language-Image Model
CXR-RePaiR (Contrastive X-ray-Report Pair Retrieval) is a retrieval-based radiology report generation approach that uses a contrastive language-image model. See our paper here!
Running CXR-RePaiR
Installation
Using conda
First, install PyTorch 1.7.1 (or later) and torchvision, as well as small additional dependencies. On a CUDA GPU machine, the following will do the trick:
conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
pip install ftfy regex tqdm pandas h5py sklearn
Replace cudatoolkit=11.0
above with the appropriate CUDA version on your machine or cpuonly
when installing on a machine without a GPU.
Data Preprocessing
In order to run our method, we must run a series of steps to process the MIMIC-CXR-JPG dataset.
Data Access
First, you must get approval for the use of MIMIC-CXR and MIMIC-CXR-JPG. With approval, you will have access to the train/test reports and the jpg images.
Create Data Split
python data_preprocessing/split_mimic.py \
--report_files_dir=<directory containing all reports> \
--split_path=<path to split file in mimic-cxr-jpg> \
--out_dir=mimic_data
Extract Impressions Section
python data_preprocessing/extract_impressions.py \
--dir=mimic_data
Create Test Set of Report/CXR Pairs
python data_preprocessing/create_bootstrapped_testset.py \
--dir=mimic_data \
--bootstrap_dir=bootstrap_test \
--cxr_files_dir=<mimic-cxr-jpg directory containing chest X-rays>
Get groundtruth labels for test reports
Either retrieve chexpert embeddings of the mimic test reports provided in the mimic-cxr-2.0.0-chexpert.csv.gz file, or run CheXbert on the reports.csv file to get labels. Title the file labels.csv, and put the file under the bootstrap_test directory.
Pre-trained CLIP Model
The CLIP model checkpoint trained on MIMIC-CXR train set is available for download here.
Generating embeddings for the corpus
python gen_corpus_embeddings.py \
--clip_model_path=<name of clip model state dictionary for generating embeddings> \
--clip_pretrained \
--data_path=<path of csv file containing training corpus (either sentence level or report level)> \
--out=clip_pretrained_mimic_train_sentence_embeddings.pt
Note: if you are using a clip model that was not first pre-trained on natural language-image pairs, then you shouldn't set the --clip_pretrained
flag.
Creating reports
python run_test.py \
--corpus_embeddings_name=clip_pretrained_mimic_train_sentence_embeddings.pt \
--clip_model_path=<name of clip model state dictionary> \
--clip_pretrained \
--out_dir=CXR-RePaiR-2_mimic_results \
--test_cxr_path=bootstrap_test/cxr.h5 \
--topk=2
Generating labels of predicted reports
In order to generate per-pathology predictions from the outputted reports, use CheXbert.
Testing performance
python test_acc_batch.py \
--dir=CXR-RePaiR-2_mimic_results \
--bootstrap_dir=bootstrap_test/
License
This repository is made publicly available under the MIT License.
Citing
If you are using this repo, please cite this paper:
@InProceedings{pmlr-v158-endo21a,
title = {Retrieval-Based Chest X-Ray Report Generation Using a Pre-trained Contrastive Language-Image Model},
author = {Endo, Mark and Krishnan, Rayan and Krishna, Viswesh and Ng, Andrew Y. and Rajpurkar, Pranav},
booktitle = {Proceedings of Machine Learning for Health},
pages = {209--219},
year = {2021},
volume = {158},
series = {Proceedings of Machine Learning Research}
}