Awesome
Relation-enhanced Negative Sampling for Multimodal Knowledge Graph Completion
This is the code of the paper Relation-enhanced Negative Sampling for Multimodal Knowledge Graph Completion for ACM MM 2022.
Requirements
- pytorch == 1.10.1
- numpy == 1.20.3
Datasets
The source images and triples of MMKB-DB15K are from mmkb.
The source text of three datasets are from DBpedia.
The embeddings and raw data can be downloaded in the Google Drive
Usage
mkdir data models results
put the datasets in ./data
and
python run_gumbel.py --do_train --do_valid --do_test --data_path=data/MMKB-DB15K --model=TransE -n=20 -d=200 -g=6 -a=0.5 \
-r=0.0 -lr=0.0001 -kca_lr=0.0001 --sample_method=gumbel --pre_sample_num=1500 --loss_rate=100 --exploration_temp=10 \
--gpu=0 --max_steps=100000 --valid_steps=10000 -b=400
This code refers to the code of RotatE and Nscaching.
Citation
If you find this codebase useful in your research, please cite the following paper.
@inproceedings{xu2022relation,
title={Relation-enhanced Negative Sampling for Multimodal Knowledge Graph Completion},
author={Xu, Derong and Xu, Tong and Wu, Shiwei and Zhou, Jingbo and Chen, Enhong},
booktitle={Proceedings of the 30th ACM International Conference on Multimedia},
pages={3857--3866},
year={2022}
}