Home

Awesome

MegaParse - Your Mega Parser for every type of documents

<div align="center"> <img src="https://raw.githubusercontent.com/QuivrHQ/MegaParse/main/logo.png" alt="Quivr-logo" width="30%" style="border-radius: 50%; padding-bottom: 20px"/> </div>

MegaParse is a powerful and versatile parser that can handle various types of documents with ease. Whether you're dealing with text, PDFs, Powerpoint presentations, Word documents MegaParse has got you covered. Focus on having no information loss during parsing.

Key Features 🎯

Support

Example

https://github.com/QuivrHQ/MegaParse/assets/19614572/1b4cdb73-8dc2-44ef-b8b4-a7509bc8d4f3

Installation

pip install megaparse 

Usage

  1. Add your OpenAI or Anthropic API key to the .env file

  2. Install poppler on your computer (images and PDFs)

  3. Install tesseract on your computer (images and PDFs)

  4. If you have a mac, you also need to install libmagic brew install libmagic

from megaparse.core.megaparse import MegaParse
from langchain_openai import ChatOpenAI
from megaparse.core.parser.unstructured_parser import UnstructuredParser

model = ChatOpenAI(model="gpt-4o", api_key=os.getenv("OPENAI_API_KEY"))  # or any langchain compatible Chat Models
parser = UnstructuredParser(model=model)
megaparse = MegaParse(parser)
response = megaparse.load("./test.pdf")
print(response)
megaparse.save("./test.md") #saves the last processed doc in md format

Use MegaParse Vision

from megaparse.core.megaparse import MegaParse
from langchain_openai import ChatOpenAI
from megaparse.core.parser.megaparse_vision import MegaParseVision

model = ChatOpenAI(model="gpt-4o", api_key=os.getenv("OPENAI_API_KEY"))  # type: ignore
parser = MegaParseVision(model=model)
megaparse = MegaParse(parser)
response = megaparse.load("./test.pdf")
print(response)
megaparse.save("./test.md")

Note: The model supported by MegaParse Vision are the multimodal ones such as claude 3.5, claude 4, gpt-4o and gpt-4.

(Optional) Use LlamaParse for Improved Results

  1. Create an account on Llama Cloud and get your API key.

  2. Change the parser to LlamaParser

from megaparse.core.megaparse import MegaParse
from langchain_openai import ChatOpenAI
from megaparse.core.parser.llama import LlamaParser

parser = LlamaParser(api_key = os.getenv("LLAMA_CLOUD_API_KEY"))
megaparse = MegaParse(parser)
response = megaparse.load("./test.pdf")
print(response)
megaparse.save("./test.md") #saves the last processed doc in md format

Use as an API

There is a MakeFile for you, simply use : make dev at the root of the project and you are good to go.

See localhost:8000/docs for more info on the different endpoints !

BenchMark

<!---BENCHMARK-->
Parsersimilarity_ratio
megaparse_vision0.87
unstructured_with_check_table0.77
unstructured0.59
llama_parser0.33
<!---END_BENCHMARK-->

Higher the better

Note: Want to evaluate and compare your Megaparse module with ours ? Please add your config in evaluations/script.py and then run python evaluations/script.py. If it is better, do a PR, I mean, let's go higher together 🚀.

In Construction 🚧

Star History

Star History Chart