Awesome
YOLO: Real-Time Object Detection (Caffe)
This is the caffe version YOLO V2 ported directly from darknet YOLO
Detection Using A Pre-Trained VOC Model
-
Step 0 BUILD this reporsitory caffe
git clone https://github.com/quhezheng/caffe_yolo_v2 cd caffe_yolo_v2 mkdir build cd build cmake .. make
-
Step 1 Download the trained model from Baidu disk https://pan.baidu.com/s/1jJ9emNW
cd .. #back to project root folder cd examples/yolo mkdir model_voc cp DOWNLOAD/PATH/OF/yolo_voc_iter_120000.caffemodel model_voc python detect.py
detect.py use CPU do do predition by default, please change the script if want GPU
Train the VOC data
-
Step 0 Build caffe in [YOUR_LOCAL_REPOSITORY_PATH]/build
-
Step 1 Download VOC2007 & 2012 dataset(here)
cd [YOUR_LOCAL_REPOSITORY_PATH]/data/yolo wget http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar wget http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar wget http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar wget http://pjreddie.com/media/files/VOC2012test.tar tar -xvf VOCtest_06-Nov-2007.tar tar -xvf VOCtrainval_06-Nov-2007.tar tar -xvf VOCtrainval_11-May-2012.tar tar -xvf VOC2012test.tar
There it will be 'VOCdevkit' folder
-
Step 2 Create lmdb index *.txt files
python get_list.py
There it will be 'trainval.txt test_2007.txt test_2012.txt' files
-
Step 3 Create lmdb
./convert.sh
There it will be lmdb folder has all lmdb
-
Step 4 Download the pre-trained model darknet19_448.conv.23.caffemodel from Baidu disk
This model is converted directly from darknet darknet19_448.conv.23. It contain trained TOP 23 layers' weight, other layers' weight are initilized by 'xavier'
cd ../../examples/yolo cp DOWNLOAD/PATH/OF/darknet19_448.conv.23.caffemodel ./ mkdir model_voc ./train_voc.sh