Awesome
APRO3D-Net: Attention-based Proposals Refinement for 3D Object Detection
This implementation of APRO3D-Net is based on OpenPCDet
. Our paper can be found here.
Performance on KITTI val set
AP@R11 | AP@R40 | Download | |||||
---|---|---|---|---|---|---|---|
Car | Pedestrian | Cyclist | Car | Pedestrian | Cyclist | ||
APRO3D-Net (kitti) | 83.51 | 57.45 | 72.97 | 84.84 | 57.00 | 73.35 | kitti-model |
Performance on NuScenes val set
Car | Ped | Bus | Barrier | Traf. Cone | Truck | Trailer | Motor | Cons. Veh. | Bicycle | mAP | Download | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
APRO3D-Net (nuscenes) | 77.75 | 74.02 | 64.86 | 52.61 | 46.34 | 43.99 | 34.90 | 39.36 | 13.44 | 23.00 | 47.03 | nuscenes-model |
Installation
To use this repo, please follow OpenPCDet
's intruction for preparing datasets and installation.
Demo
Demo requires open3d
pip install open3d
KITTI Dataset
To visualize prediction for KITTI Dataset,
- Download the trained model
- Execute the following command in the
tools
directory
python visualize_kitti.py --cfg_file cfgs/kitti_models/swh_kitti.yaml \
--ckpt_file <path_to_directory_containing_ckpt>/roi100_checkpoint_epoch_91.pth --log_file_dir .
Example results
<p align="center"> <img src="docs/kitti_quali_small.png" width="75%"> </p>NuScenes Dataset
To visualize prediction for NuScenes Dataset
- Download the prediction file generated for mini split or test split
- If the test split is chosen, remember of generate NuScenes database with test split enabled by setting the following fields in nuscenes_dataset.yaml
VERSION: 'v1.0-test'
DATA_SPLIT: {
'train': train,
'test': test
}
INFO_PATH: {
'train': [nuscenes_infos_10sweeps_train.pkl],
'test': [nuscenes_infos_10sweeps_test.pkl],
}
- Execute the following command in the
tools
directory
python visualize_nuscenes.py --split mini \
--result_file <path_to_directory_containing_prediction>/results_nusc_swh_second_rfe_mini.json \
--scene_idx 0 --render_cam_back --render_point_cloud
Example results
<p align="center"> <img src="docs/nuscenes_quali_small.png" width="75%"> </p>Test
To test pretrained model, execute the following command in the tools
directory
python test.py --cfg_file ${CONFIG_FILE} --ckpt ${CKPT}
# e.g.,
python test.py --cfg_file tools/cfgs/kitti_models/swh_kitti.yaml \
--ckpt <path_to_directory_containing_ckpt>/roi100_checkpoint_epoch_91.pth