Home

Awesome

nimdataframe

nimble

Dataframe for Nim

LibraryStatusVersionLicenseOSCompiler
nimdataframeDevelopment0.0.5.xMIT opensourceLinuxNim >= 0.19.x

Attempt of using csv data from the net, locally or generated to implement display,handling,sorting and data extraction.

Work in progress

used with https://github.com/qqtop/NimFinLib

API Docs

Index

Nimdataframe

Installation


        nimble install nimcx
        nimble install https://github.com/qqtop/nimdataframe.git

Image

Screenshot of nimdfT19 showing bluenote10 / bundesliga.csv with nimdataframe

Example Code

## nimdfT13.nim
## 
## 
#  October data from http://www.imf.org/external/np/fin/data/rms_mth.aspx?reportType=CVSDR 
#  slightly processed to shorten header (only data of first table imported here) and saved into file rms.csv


import nimcx , nimdataframe

let ufo = "rms.csv"   

var ndf9 = createDataFrame(ufo,cols = 12,sep = ',',hasHeader = true)  # load locally from rms.csv also give state the number of cols in csv

if ndf9.hasHeader == true:
   for x in 0..<ndf9.colcount: ndf9.colheaders.add(ndf9.df[0][x])   # row 0 col x
for x in 0..<ndf9.colcount: ndf9.colcolors.add(randcol())            # create some fun colors and add to df
for x in 0..<ndf9.colcount: ndf9.colwidths.add(9)                   # create a colwidths for each column default here is 9
ndf9.colwidths[0] = 15                                              # change first column width to 15
printLnBiCol("Data Source : " & ufo,xpos = 3)
echo()
showDf(ndf9,                                                        # display df
   rows = 1500,     
   cols = toNimis(toSeq(1 .. ndf9.colCount)),                           
   colwd = ndf9.colwidths,
   colcolors = ndf9.colcolors,
   showFrame = true,
   framecolor = dodgerblue,
   showHeader = true,
   xpos = 3) 
decho(3)

# now we want to display row statistics on this df
  
var xpos = 2   
var startrow = 0
if ndf9.hasHeader == true :  # donot read to run stats on the header
       startrow = 1
else : startrow = 0

decho(2)
for row in startrow ..< ndf9.rowcount:
    printLn(fmtx(["<20"],$(ndf9.df[row][0])),zippi,styled={stylereverse},xpos = xpos)
    var x = dfRowStats(ndf9,row)   # x now contains a runningstats instance for one row
    # display stats for all rows
    let n = 3       # decimals
    cxprintLn(xpos,yellowgreen,"        " ,white, "")    # need this blank line or display is jumbled up
    cxprintLn(xpos,yellowgreen,"mean  : " ,white, ff(x.mean,n))
    cxprintln(xpos,yellowgreen,"var   : " ,white, ff(x.variance,n))
    cxprintln(xpos,yellowgreen,"min   : " ,white, ff(x.min,n))
    cxprintln(xpos,yellowgreen,"max   : " ,white, ff(x.max,n))
 
    curup(6)
    xpos += 21
    if xpos > tw - 30:
       curdn(13)
       xpos = 2
       echo()
       
decho(6)
showDataframeInfo(ndf9,2)
doFinish()



Example screenshots of nimdfT13

Image

Image

NOTE :

 Improvements may be made at any time and without advance warning.
 Examples may break occasionally  ...  !
 
 Forking , testing,suggestions , ideas are welcome.
 This is development code hence use at your own risk.
 
               

Image