Awesome
TricubeNet - Official Pytorch Implementation (WACV 2022)
TricubeNet: 2D Kernel-Based Object Representation for Weakly-Occluded Oriented Object Detection <br /> Beomyoung Kim<sup>1</sup>, Janghyeon Lee<sup>2</sup>, Sihaeng Lee<sup>2</sup>, Doyeon Kim<sup>3</sup>, Junmo Kim<sup>3</sup><br>
<sup>1</sup> <sub>NAVER CLOVA</sub><br /> <sup>2</sup> <sub>LG AI Research</sub><br /> <sup>3</sup> <sub>KAIST</sub><br />
WACV 2022 <br />
<img src = "https://github.com/qjadud1994/TricubeNet/blob/main/figures/overview.png" width="100%" height="100%">How to use?
Data Preparation
For training
bash run_train.sh
Please check the discription of training hyperparameters (we recommend to use default hyperparameters)
python3 train.py --help
For testing
cd evaluation
bash run_eval.sh
Please check the discription of testing hyperparameters (we recommend to use default hyperparameters)
python3 eval_DOTA.py --help
Qualitative Results
DOTA
<img src = "https://github.com/qjadud1994/TricubeNet/blob/main/figures/DOTA.png" width="70%" height="70%">MSRA-TD500, ICDAR 2015
<img src = "https://github.com/qjadud1994/TricubeNet/blob/main/figures/Text-Detection.png" width="70%" height="70%">SKU110K-R
<img src = "https://github.com/qjadud1994/TricubeNet/blob/main/figures/SKU110K-R.png" width="70%" height="70%">Citation
We hope that you find this work useful. If you would like to acknowledge us, please, use the following citation:
@inproceedings{kim2022tricubenet,
title={TricubeNet: 2D Kernel-Based Object Representation for Weakly-Occluded Oriented Object Detection},
author={Kim, Beomyoung and Lee, Janghyeon and Lee, Sihaeng and Kim, Doyeon and Kim, Junmo},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={167--176},
year={2022}
}