Home

Awesome

LIGHTEN-Learning-Interactions-with-Graphs-and-hierarchical-TEmporal-Networks-for-HOI

Introduction

This repository contains code for LIGHTEN HOI detection pipeline, proposed in the ACM MM'20 paper: LIGHTEN: Learning Interactions with Graph and Hierarchical TEmporal Networks for HOI in videos.

Illustration of human-object interaction detection in video (CAD-120) and image (V-COCO) settings

Installation

LIGHTEN is implemented in Pytorch1.4 with CUDA-10.1 in python3.8. Other python packages can be installed using :

pip install -r requirements.txt

Setting up the codebase

Datasets

Pre-trained models

Download the pretrained models from the following folders : i) CAD120 checkpoints ii) V-COCO checkpoints

Configuration

Set the corresponding paths to data and pre-trained models in config.py file. Hyper-paramters and model configurations can be set from this file. The directory structure after setting up looks like :

LIGHTEN-Learning-Interactions-with-Graphs-and-hierarchical-TEmporal-Networks-for-HOI/
  CAD120/
    checkpoints/
      checkpoint_GCN_frame_detection.pth
      checkpoint_GCN_segment_detection.pth
    data/
      training_data.p
      testing_data.p
    models/
  V-COCO/
    checkpoints/
    data/
      training_data.p
      testing_data.p
      action_index.json
      Test_Faster_RCNN_R-50-PFN_2x_VCOCO_Keypoints.pkl
    models/

Running the code

CAD120

cd CAD120/
python compute_RoI_feats.py
cd CAD120/
python train_CAD120.py
python test_CAD120.py

V-COCO

cd V-COCO/
python compute_RoI_feats.py
cd V-COCO/
python train_VCOCO.py
python eval_VCOCO.py
python test_VCOCO.py

Citation