Home

Awesome

SQLite-net

[GitHub Action] [Code Coverage Report]

Use one of these packages:

VersionPackageDescription
NuGet Packagesqlite-net-pcl.NET Standard Library
NuGet Package with Encryptionsqlite-net-sqlcipherWith Encryption Support
NuGet Package using P/Invokesqlite-net-staticSpecial version that uses P/Invokes to platform-provided sqlite3
NuGet Package without a SQLitePCLRaw bundlesqlite-net-basewithout a SQLitePCLRaw bundle so you can choose your own provider

SQLite-net is an open source, minimal library to allow .NET, .NET Core, and Mono applications to store data in SQLite 3 databases. It was first designed to work with Xamarin.iOS, but has since grown up to work on all the platforms (Xamarin.*, .NET, UWP, Azure, etc.).

SQLite-net was designed as a quick and convenient database layer. Its design follows from these goals:

NuGet Installation

Install sqlite-net-pcl from NuGet.

Important: You will need to add the NuGet package to both your .NET Standard library project and your platform-dependent app project.

Source Installation

SQLite-net is all contained in 1 file (I know, so cool right?) and is easy to add to your project. Just add SQLite.cs to your project, and you're ready to start creating tables. An asynchronous implementation can be found in SQLiteAsync.cs.

Please Contribute!

This is an open source project that welcomes contributions/suggestions/bug reports from those who use it. If you have any ideas on how to improve the library, please post an issue here on GitHub. Please check out the How to Contribute.

Example Time!

Please consult the Wiki for, ahem, complete documentation.

The library contains simple attributes that you can use to control the construction of tables. In a simple stock program, you might use:

public class Stock
{
	[PrimaryKey, AutoIncrement]
	public int Id { get; set; }
	public string Symbol { get; set; }
}

public class Valuation
{
	[PrimaryKey, AutoIncrement]
	public int Id { get; set; }
	[Indexed]
	public int StockId { get; set; }
	public DateTime Time { get; set; }
	public decimal Price { get; set; }
	[Ignore]
	public string IgnoreField { get; set; }
}

Once you've defined the objects in your model you have a choice of APIs. You can use the "synchronous API" where calls block one at a time, or you can use the "asynchronous API" where calls do not block. You may care to use the asynchronous API for mobile applications in order to increase responsiveness.

Both APIs are explained in the two sections below.

Synchronous API

Once you have defined your entity, you can automatically generate tables in your database by calling CreateTable:

// Get an absolute path to the database file
var databasePath = Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments), "MyData.db");

var db = new SQLiteConnection(databasePath);
db.CreateTable<Stock>();
db.CreateTable<Valuation>();

You can insert rows in the database using Insert. If the table contains an auto-incremented primary key, then the value for that key will be available to you after the insert:

public static void AddStock(SQLiteConnection db, string symbol) {
	var stock = new Stock() {
		Symbol = symbol
	};
	db.Insert(stock);
	Console.WriteLine("{0} == {1}", stock.Symbol, stock.Id);
}

Similar methods exist for Update and Delete.

The most straightforward way to query for data is using the Table method. This can take predicates for constraining via WHERE clauses and/or adding ORDER BY clauses:

var query = db.Table<Stock>().Where(v => v.Symbol.StartsWith("A"));

foreach (var stock in query)
	Console.WriteLine("Stock: " + stock.Symbol);

You can also query the database at a low-level using the Query method:

public static IEnumerable<Valuation> QueryValuations (SQLiteConnection db, Stock stock) {
	return db.Query<Valuation> ("select * from Valuation where StockId = ?", stock.Id);
}

The generic parameter to the Query method specifies the type of object to create for each row. It can be one of your table classes, or any other class whose public properties match the column returned by the query. For instance, we could rewrite the above query as:

public class Val
{
	public decimal Money { get; set; }
	public DateTime Date { get; set; }
}

public static IEnumerable<Val> QueryVals (SQLiteConnection db, Stock stock) {
	return db.Query<Val> ("select \"Price\" as \"Money\", \"Time\" as \"Date\" from Valuation where StockId = ?", stock.Id);
}

You can perform low-level updates of the database using the Execute method.

Asynchronous API

The asynchronous library uses the Task Parallel Library (TPL). As such, normal use of Task objects, and the async and await keywords will work for you.

Once you have defined your entity, you can automatically generate tables by calling CreateTableAsync:

// Get an absolute path to the database file
var databasePath = Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments), "MyData.db");

var db = new SQLiteAsyncConnection(databasePath);

await db.CreateTableAsync<Stock>();

Console.WriteLine("Table created!");

You can insert rows in the database using Insert. If the table contains an auto-incremented primary key, then the value for that key will be available to you after the insert:

var stock = new Stock()
{
	Symbol = "AAPL"
};

await db.InsertAsync(stock);

Console.WriteLine("Auto stock id: {0}", stock.Id);

Similar methods exist for UpdateAsync and DeleteAsync.

Querying for data is most straightforwardly done using the Table method. This will return an AsyncTableQuery instance back, whereupon you can add predicates for constraining via WHERE clauses and/or adding ORDER BY. The database is not physically touched until one of the special retrieval methods - ToListAsync, FirstAsync, or FirstOrDefaultAsync - is called.

var query = db.Table<Stock>().Where(s => s.Symbol.StartsWith("A"));

var result = await query.ToListAsync();

foreach (var s in result)
	Console.WriteLine("Stock: " + s.Symbol);

There are a number of low-level methods available. You can also query the database directly via the QueryAsync method. Over and above the change operations provided by InsertAsync etc you can issue ExecuteAsync methods to change sets of data directly within the database.

Another helpful method is ExecuteScalarAsync. This allows you to return a scalar value from the database easily:

var count = await db.ExecuteScalarAsync<int>("select count(*) from Stock");

Console.WriteLine(string.Format("Found '{0}' stock items.", count));

Manual SQL

sqlite-net is normally used as a light ORM (object-relational-mapper) using the methods CreateTable and Table. However, you can also use it as a convenient way to manually execute queries.

Here is an example of creating a table, inserting into it (with a parameterized command), and querying it without using ORM features.

db.Execute ("create table Stock(Symbol varchar(100) not null)");
db.Execute ("insert into Stock(Symbol) values (?)", "MSFT");
var stocks = db.Query<Stock> ("select * from Stock");

Using SQLCipher

You can use an encrypted database by using the sqlite-net-sqlcipher NuGet package.

The database key is set in the SqliteConnectionString passed to the connection constructor:

var options = new SQLiteConnectionString(databasePath, true,
	key: "password");
var encryptedDb = new SQLiteAsyncConnection(options);

If you need set pragmas to control the encryption, actions can be passed to the connection string:

var options2 = new SQLiteConnectionString (databasePath, true,
	key: "password",
	preKeyAction: db => db.Execute("PRAGMA cipher_default_use_hmac = OFF;"),
	postKeyAction: db => db.Execute ("PRAGMA kdf_iter = 128000;"));
var encryptedDb2 = new SQLiteAsyncConnection (options2);

Thank you!

Thank you to the .NET community for embracing this project, and thank you to all the contributors who have helped to make this great.

Thanks also to Tirza van Dijk (@tirzavdijk) for the great logo!