Home

Awesome

Channel Search for ResNet20

CVPR2021 Workshop Neural Architecture Search 1st lightweight NAS challenge and moving beyond

Feature

Experimental Results

Training Details:

CIFAR10

NetworkParams(M)Train lossTrain top1Val lossVal top1HyperGPU(M)
densenet_cifar4.40.0015699.99%0.2494.83%0.1/256/w/o cutout7303
dla630.0016499.99%0.2095.57%0.1/256/w/o cutout5555
resnet50910.00105100.0%0.1995.74%0.1/256/w/o cutout10895
attention522140.0010999.99%0.4990.62%0.01/256/w/o cutout5691
dpn26450.00195100.0%0.1695.43%0.1/256/w/o cutout10260
resnet50_cutout910.00103100.0%0.1895.87%0.1/128/ cutout=0.510895
efficientnetb0150.0239699.32%0.3591.52%0.1/128/w/o cutout3961
googlenet250.00216100.0%0.1795.18%0.1/128/w/o cutout7689
inceptionv3860.00183100.0%0.1995.27%0.1/128/w/o cutout8053
inceptionv41590.0029299.99%0.2493.50%0.1/64/w/o cutout7557
inception_resnet_v22510.0100199.79%0.3192.22%0.1/64/w/o cutout8237
mobilenet130.0090499.78%0.3791.94%0.1/128/w/o cutout2655
mobilenetv20.0042799.93%0.2494.00%
shake_resnet26_2x32d230.1643094.31%0.1295.94%0.1/128/w/o cutout w/o mixup2253
shake_resnet26_2x64d910.1077596.41%0.1096.94%0.1/128/w/o cutout w/o mixup3779
shake_resnet26_2x64d_mixup910.9775570.70%0.2796.53%0.1/128/w/o cutout w mixup3779
shake_resnet26_2x64d_cutout910.1078896.37%0.1096.89%0.1/128/w cutout w/o mixup3779
shake_resnet26_2x64d_autoaug910.1077596.41%0.1096.94%0.1/128/w/o cutout w/o mixup w/ autoaug3779
shake_resnet26_2x64d_autoaug_mixup910.9775570.07%0.2796.53%0.1/128/w/o cutout w/ mixup w/ autoaug3779
shake_resnet26_2x64d_autoaug_cutout910.1078896.37%0.1096.89%0.1/128/w cutout w/o mixup w/ autoaug3779
shake_resnet26_2x64d_autoaug_cutout_mixup910.9775570.07%0.2796.53%0.1/128/w cutout w/ mixup w/ autoaug3779
resnet50_mixup910.6890876.88%0.2696.44%0.1/128/w/o cutout/ w mixup10895
resnet50_cutout_mixup910.6991476.15%0.2696.44%0.1/128/cutout=0.5 /w mixup10895
resnet50_autoaug910.0683897.63%0.1496.10%0.1/128/w/o cutout w/o mixup/ w autoaug6479
resnet50_autoaug_mixup910.8633172.5%0.2896.95%0.1/128/w/o cutout w/mixup w/ autoaug6101

python train.py

CIFAR100

datasetnetworkparamstop1 errtop5 errepoch(lr = 0.1)epoch(lr = 0.02)epoch(lr = 0.004)epoch(lr = 0.0008)total epoch
cifar100mobilenet3.3M34.0210.5660604040200
cifar100mobilenetv22.36M31.9209.0260604040200
cifar100squeezenet0.78M30.598.3660604040200
cifar100shufflenetv21.3M30.498.4960604040200
cifar100vgg13_bn28.7M28.009.7160604040200
cifar100vgg16_bn34.0M27.078.8460604040200
cifar100resnet1811.2M24.396.9560604040200
cifar100resnet3421.3M23.246.6360604040200
cifar100resnet5023.7M22.616.0460604040200
cifar100resnet10142.7M22.225.6160604040200
cifar100resnet15258.3M22.315.8160604040200
cifar100preactresnet1811.3M27.088.5360604040200
cifar100preactresnet3421.5M24.797.6860604040200
cifar100preactresnet5023.9M25.738.1560604040200
cifar100preactresnet10142.9M24.847.8360604040200
cifar100preactresnet15258.6M22.716.6260604040200
cifar100resnext5014.8M22.236.0060604040200
cifar100resnext10125.3M22.225.9960604040200
cifar100resnext15233.3M22.405.5860604040200
cifar100attention5955.7M33.7512.9060604040200
cifar100attention92102.5M36.5211.4760604040200
cifar100densenet1217.0M22.996.4560604040200
cifar100densenet16126M21.566.0460606040200
cifar100densenet20118M21.465.960604040200
cifar100googlenet6.2M21.975.9460604040200
cifar100inceptionv322.3M22.816.3960604040200
cifar100inceptionv441.3M24.146.9060604040200
cifar100inceptionresnetv265.4M27.519.1160604040200
cifar100xception21.0M25.077.3260604040200
cifar100seresnet1811.4M23.566.6860604040200
cifar100seresnet3421.6M22.076.1260604040200
cifar100seresnet5026.5M21.425.5860604040200
cifar100seresnet10147.7M20.985.4160604040200
cifar100seresnet15266.2M20.665.1960604040200
cifar100nasnet5.2M22.715.9160604040200
cifar100stochasticdepth1811.22M31.408.8460604040200
cifar100stochasticdepth3421.36M27.727.3260604040200
cifar100stochasticdepth5023.71M23.355.7660604040200
cifar100stochasticdepth10142.69M21.285.3960604040200

Acknowledgement