Awesome
YOLOv5-Lite:Lighter, faster and easier to deploy
Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, and fewer parameters) and faster (add shuffle channel, yolov5 head for channel reduce. It can infer at least 10+ FPS On the Raspberry Pi 4B when input the frame with 320×320) and is easier to deploy (removing the Focus layer and four slice operations, reducing the model quantization accuracy to an acceptable range).
Comparison of ablation experiment results
ID | Model | Input_size | Flops | Params | Size(M) | Map@0.5 | Map@.5:0.95 |
---|---|---|---|---|---|---|---|
001 | yolo-fastest | 320×320 | 0.25G | 0.35M | 1.4 | 24.4 | - |
002 | YOLOv5-Lite<sub>e</sub><sup>ours</sup> | 320×320 | 0.73G | 0.78M | 1.7 | 35.1 | - |
003 | NanoDet-m | 320×320 | 0.72G | 0.95M | 1.8 | - | 20.6 |
004 | yolo-fastest-xl | 320×320 | 0.72G | 0.92M | 3.5 | 34.3 | - |
005 | YOLOX<sub>Nano</sub> | 416×416 | 1.08G | 0.91M | 7.3(fp32) | - | 25.8 |
006 | yolov3-tiny | 416×416 | 6.96G | 6.06M | 23.0 | 33.1 | 16.6 |
007 | yolov4-tiny | 416×416 | 5.62G | 8.86M | 33.7 | 40.2 | 21.7 |
008 | YOLOv5-Lite<sub>s</sub><sup>ours</sup> | 416×416 | 1.66G | 1.64M | 3.4 | 42.0 | 25.2 |
009 | YOLOv5-Lite<sub>c</sub><sup>ours</sup> | 512×512 | 5.92G | 4.57M | 9.2 | 50.9 | 32.5 |
010 | NanoDet-EfficientLite2 | 512×512 | 7.12G | 4.71M | 18.3 | - | 32.6 |
011 | YOLOv5s(6.0) | 640×640 | 16.5G | 7.23M | 14.0 | 56.0 | 37.2 |
012 | YOLOv5-Lite<sub>g</sub><sup>ours</sup> | 640×640 | 15.6G | 5.39M | 10.9 | 57.6 | 39.1 |
See the wiki: https://github.com/ppogg/YOLOv5-Lite/wiki/Test-the-map-of-models-about-coco
Comparison on different platforms
Equipment | Computing backend | System | Input | Framework | v5lite-e | v5lite-s | v5lite-c | v5lite-g | YOLOv5s |
---|---|---|---|---|---|---|---|---|---|
Inter | @i5-10210U | window(x86) | 640×640 | openvino | - | - | 46ms | - | 131ms |
Nvidia | @RTX 2080Ti | Linux(x86) | 640×640 | torch | - | - | - | 15ms | 14ms |
Redmi K30 | @Snapdragon 730G | Android(armv8) | 320×320 | ncnn | 27ms | 38ms | - | - | 163ms |
Xiaomi 10 | @Snapdragon 865 | Android(armv8) | 320×320 | ncnn | 10ms | 14ms | - | - | 163ms |
Raspberrypi 4B | @ARM Cortex-A72 | Linux(arm64) | 320×320 | ncnn | - | 84ms | - | - | 371ms |
Raspberrypi 4B | @ARM Cortex-A72 | Linux(arm64) | 320×320 | mnn | - | 71ms | - | - | 356ms |
AXera-Pi | Cortex A7@CPU<br />3.6TOPs @NPU | Linux(arm64) | 640×640 | axpi | - | - | - | 22ms | 22ms |
The tutorial of 15FPS on Raspberry Pi 4B:
https://zhuanlan.zhihu.com/p/672633849
- The above is a 4-thread test benchmark
- Raspberrypi 4B enable bf16s optimization,Raspberrypi 64 Bit OS
qq交流群:993965802
入群答案:剪枝 or 蒸馏 or 量化 or 低秩分解(任意其一均可)
·Model Zoo·
@v5lite-e:
Model | Size | Backbone | Head | Framework | Design for |
---|---|---|---|---|---|
v5Lite-e.pt | 1.7m | shufflenetv2(Megvii) | v5Litee-head | Pytorch | Arm-cpu |
v5Lite-e.bin<br />v5Lite-e.param | 1.7m | shufflenetv2 | v5Litee-head | ncnn | Arm-cpu |
v5Lite-e-int8.bin<br />v5Lite-e-int8.param | 0.9m | shufflenetv2 | v5Litee-head | ncnn | Arm-cpu |
v5Lite-e-fp32.mnn | 3.0m | shufflenetv2 | v5Litee-head | mnn | Arm-cpu |
v5Lite-e-fp32.tnnmodel<br />v5Lite-e-fp32.tnnproto | 2.9m | shufflenetv2 | v5Litee-head | tnn | arm-cpu |
v5Lite-e-320.onnx | 3.1m | shufflenetv2 | v5Litee-head | onnxruntime | x86-cpu |
@v5lite-s:
Model | Size | Backbone | Head | Framework | Design for |
---|---|---|---|---|---|
v5Lite-s.pt | 3.4m | shufflenetv2(Megvii) | v5Lites-head | Pytorch | Arm-cpu |
v5Lite-s.bin<br />v5Lite-s.param | 3.3m | shufflenetv2 | v5Lites-head | ncnn | Arm-cpu |
v5Lite-s-int8.bin<br />v5Lite-s-int8.param | 1.7m | shufflenetv2 | v5Lites-head | ncnn | Arm-cpu |
v5Lite-s.mnn | 3.3m | shufflenetv2 | v5Lites-head | mnn | Arm-cpu |
v5Lite-s-int4.mnn | 987k | shufflenetv2 | v5Lites-head | mnn | Arm-cpu |
v5Lite-s-fp16.bin<br />v5Lite-s-fp16.xml | 3.4m | shufflenetv2 | v5Lites-head | openvivo | x86-cpu |
v5Lite-s-fp32.bin<br />v5Lite-s-fp32.xml | 6.8m | shufflenetv2 | v5Lites-head | openvivo | x86-cpu |
v5Lite-s-fp16.tflite | 3.3m | shufflenetv2 | v5Lites-head | tflite | arm-cpu |
v5Lite-s-fp32.tflite | 6.7m | shufflenetv2 | v5Lites-head | tflite | arm-cpu |
v5Lite-s-int8.tflite | 1.8m | shufflenetv2 | v5Lites-head | tflite | arm-cpu |
v5Lite-s-416.onnx | 6.4m | shufflenetv2 | v5Lites-head | onnxruntime | x86-cpu |
@v5lite-c:
Model | Size | Backbone | Head | Framework | Design for |
---|---|---|---|---|---|
v5Lite-c.pt | 9m | PPLcnet(Baidu) | v5s-head | Pytorch | x86-cpu / x86-vpu |
v5Lite-c.bin<br />v5Lite-c.xml | 8.7m | PPLcnet | v5s-head | openvivo | x86-cpu / x86-vpu |
v5Lite-c-512.onnx | 18m | PPLcnet | v5s-head | onnxruntime | x86-cpu |
@v5lite-g:
Model | Size | Backbone | Head | Framework | Design for |
---|---|---|---|---|---|
v5Lite-g.pt | 10.9m | Repvgg(Tsinghua) | v5Liteg-head | Pytorch | x86-gpu / arm-gpu / arm-npu |
v5Lite-g-int8.engine | 8.5m | Repvgg-yolov5 | v5Liteg-head | Tensorrt | x86-gpu / arm-gpu / arm-npu |
v5lite-g-int8.tmfile | 8.7m | Repvgg-yolov5 | v5Liteg-head | Tengine | arm-npu |
v5Lite-g-640.onnx | 21m | Repvgg-yolov5 | yolov5-head | onnxruntime | x86-cpu |
v5Lite-g-640.joint | 7.1m | Repvgg-yolov5 | yolov5-head | axpi | arm-npu |
Download Link:
v5lite-e.pt
: | Baidu Drive | Google Drive |<br>|──────
ncnn-fp16
: | Baidu Drive | Google Drive |<br> |──────ncnn-int8
: | Baidu Drive | Google Drive |<br> |──────mnn-e_bf16
: | Google Drive |<br> |──────mnn-d_bf16
: | Google Drive|<br> └──────onnx-fp32
: | Baidu Drive | Google Drive |<br>
v5lite-s.pt
: | Baidu Drive | Google Drive |<br>|──────
ncnn-fp16
: | Baidu Drive | Google Drive |<br> |──────ncnn-int8
: | Baidu Drive | Google Drive |<br> └──────tengine-fp32
: | Baidu Drive | Google Drive |<br>
v5lite-c.pt
: Baidu Drive | Google Drive |<br>└──────
openvino-fp16
: | Baidu Drive | Google Drive |<br>
v5lite-g.pt
: | Baidu Drive | Google Drive |<br>└──────
axpi-int8
: Google Drive |<br>
Baidu Drive Password: pogg
v5lite-s model: TFLite Float32, Float16, INT8, Dynamic range quantization, ONNX, TFJS, TensorRT, OpenVINO IR FP32/FP16, Myriad Inference Engin Blob, CoreML
https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite
Thanks for PINTO0309:https://github.com/PINTO0309/PINTO_model_zoo/tree/main/180_YOLOv5-Lite
<div>How to use</div>
<details open> <summary>Install</summary>Python>=3.6.0 is required with all requirements.txt installed including PyTorch>=1.7:
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->$ git clone https://github.com/ppogg/YOLOv5-Lite
$ cd YOLOv5-Lite
$ pip install -r requirements.txt
</details>
<details>
<summary>Inference with detect.py</summary>
detect.py
runs inference on a variety of sources, downloading models automatically from
the latest YOLOv5-Lite release and saving results to runs/detect
.
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
</details>
<details open>
<summary>Training</summary>
$ python train.py --data coco.yaml --cfg v5lite-e.yaml --weights v5lite-e.pt --batch-size 128
v5lite-s.yaml v5lite-s.pt 128
v5lite-c.yaml v5lite-c.pt 96
v5lite-g.yaml v5lite-g.pt 64
If you use multi-gpu. It's faster several times:
$ python -m torch.distributed.launch --nproc_per_node 2 train.py
</details>
</details>
<details open>
<summary>DataSet</summary>
Training set and test set distribution (the path with xx.jpg)
train: ../coco/images/train2017/
val: ../coco/images/val2017/
├── images # xx.jpg example
│ ├── train2017
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── 000003.jpg
│ └── val2017
│ ├── 100001.jpg
│ ├── 100002.jpg
│ └── 100003.jpg
└── labels # xx.txt example
├── train2017
│ ├── 000001.txt
│ ├── 000002.txt
│ └── 000003.txt
└── val2017
├── 100001.txt
├── 100002.txt
└── 100003.txt
</details>
<details open>
<summary>Auto LabelImg</summary>
Link :https://github.com/ppogg/AutoLabelImg
You can use LabelImg based YOLOv5-5.0 and YOLOv5-Lite to AutoAnnotate, biubiubiu 🚀 🚀 🚀 <img src="https://user-images.githubusercontent.com/82716366/177030174-dc3a5827-2821-4d8c-8d78-babe83c42fbf.JPG" width="950"/><br/>
</details> <details open> <summary>Model Hub</summary>Here, the original components of YOLOv5 and the reproduced components of YOLOv5-Lite are organized and stored in the model hub:
<details open> <summary>Heatmap Analysis</summary>$ python main.py --type all
Updating ...
</details>How to deploy
ncnn for arm-cpu
mnn for arm-cpu
openvino x86-cpu or x86-vpu
tensorrt(C++) for arm-gpu or arm-npu or x86-gpu
tensorrt(Python) for arm-gpu or arm-npu or x86-gpu
Android for arm-cpu
Android_demo
This is a Redmi phone, the processor is Snapdragon 730G, and yolov5-lite is used for detection. The performance is as follows:
link: https://github.com/ppogg/YOLOv5-Lite/tree/master/android_demo/ncnn-android-v5lite
Android_v5Lite-s: https://drive.google.com/file/d/1CtohY68N2B9XYuqFLiTp-Nd2kuFWgAUR/view?usp=sharing
Android_v5Lite-g: https://drive.google.com/file/d/1FnvkWxxP_aZwhi000xjIuhJ_OhqOUJcj/view?usp=sharing
new android app:[link] https://pan.baidu.com/s/1PRhW4fI1jq8VboPyishcIQ [keyword] pogg
<img src="https://user-images.githubusercontent.com/82716366/149959014-5f027b1c-67b6-47e2-976b-59a7c631b0f2.jpg" width="650"/><br/>
More detailed explanation
Detailed model link:
What is YOLOv5-Lite S/E model: zhihu link (Chinese): https://zhuanlan.zhihu.com/p/400545131
What is YOLOv5-Lite C model: zhihu link (Chinese): https://zhuanlan.zhihu.com/p/420737659
What is YOLOv5-Lite G model: zhihu link (Chinese): https://zhuanlan.zhihu.com/p/410874403
How to deploy on ncnn with fp16 or int8: csdn link (Chinese): https://blog.csdn.net/weixin_45829462/article/details/119787840
How to deploy on mnn with fp16 or int8: zhihu link (Chinese): https://zhuanlan.zhihu.com/p/672633849
How to deploy on onnxruntime: zhihu link (Chinese): https://zhuanlan.zhihu.com/p/476533259(old version)
How to deploy on tensorrt: zhihu link (Chinese): https://zhuanlan.zhihu.com/p/478630138
How to optimize on tensorrt: zhihu link (Chinese): https://zhuanlan.zhihu.com/p/463074494
Reference
https://github.com/ultralytics/yolov5
https://github.com/megvii-model/ShuffleNet-Series
https://github.com/Tencent/ncnn
Citing YOLOv5-Lite
If you use YOLOv5-Lite in your research, please cite our work and give a star ⭐:
@misc{yolov5lite2021,
title = {YOLOv5-Lite: Lighter, faster and easier to deploy},
author = {Xiangrong Chen and Ziman Gong},
doi = {10.5281/zenodo.5241425}
year={2021}
}