Home

Awesome

FADE: Fusing the Assets of Decoder and Encoder for Task-Agnostic Upsampling

<p align="center"><img src="carafe.gif" width="400" title="CARAFE"/><img src="fade.gif" width="400" title="FADE"/></p> <p align="center">CARAFE&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;FADE</p>

This repository includes the official implementation of FADE, an upsampling operator, presented in our paper:

FADE: Fusing the Assets of Decoder and Encoder for Task-Agnostic Upsampling

and the extended version

FADE: A Task-Agnostic Upsampling Operator for Encoder–Decoder Architectures

Proc. European Conference on Computer Vision (ECCV) / International Journal of Computer Vision

Hao Lu, Wenze Liu, Hongtao Fu, Zhiguo Cao

Huazhong University of Science and Technology, China

Highlights

<p align="center"><img src="visualization.jpg" width="800" title="visualization"/></p>

Installation

Our codes are tested on Python 3.8.8 and PyTorch 1.9.0. mmcv is additionally required for the feature assembly function by CARAFE.

Start

Our experiments are based on A2U matting and SegFormer. Please follow their installation instructions to prepare the models. In the folders a2u_matting and segformer we provide the modified model and the config files for FADE and FADE-Lite.

Here are results of image matting and semantic segmentation:

Image Matting#Param.GFLOPsSADMSEGradConnLog
Bilinear8.05M8.6137.310.010321.3835.39--
CARAFE+0.26M+6.0041.010.011821.3939.01--
IndexNet+12.26M+31.7034.280.008115.9431.91--
A2U+38K+0.6632.150.008216.3929.25--
FADE+0.12M+8.8531.100.007314.5228.11link
FADE-Lite+27K+1.4631.360.007514.8328.21link
Semantic Segmentation#Param.GFLOPsmIoUbIoULog
Bilinear13.7M15.9141.6827.80link
CARAFE+0.44M+1.4542.8229.84link
IndexNet+12.60M+30.6541.5028.27link
A2U+0.12M+0.4141.4527.31link
FADE+0.29M+2.6544.4132.65link
FADE-Lite+80K+0.8943.4931.55link

Citation

If you find this work or code useful for your research, please cite:

@inproceedings{lu2022fade,
  title={FADE: Fusing the Assets of Decoder and Encoder for Task-Agnostic Upsampling},
  author={Lu, Hao and Liu, Wenze and Fu, Hongtao and Cao, Zhiguo},
  booktitle={Proc. European Conference on Computer Vision (ECCV)},
  year={2022}
}

@article{lu2024fade,
  title={FADE: A Task-Agnostic Upsampling Operator for Encoder–Decoder Architectures},
  author={Lu, Hao and Liu, Wenze and Fu, Hongtao and Cao, Zhiguo},
  journal={International Journal of Computer Vision},
  year={2024}
}

Permission

This code is for academic purposes only. Contact: Hao Lu (hlu@hust.edu.cn)