Awesome
<!--- <h1 align="center"> A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation </h1> <div align="center"> <h3> <a href="http://ponimatkin.github.io">Georgy Ponimatkin</a>, <a href="https://nerminsamet.github.io">Nermin Samet</a>, <a href="https://youngxiao13.github.io">Yang Xiao</a>, <a href="https://dulucas.github.io/">Yuming Du</a>, <a href="http://imagine.enpc.fr/~marletr/">Renaud Marlet</a>, <a href="https://vincentlepetit.github.io/">Vincent Lepetit</a> <br> <br> WACV: Winter Conference on Applications of Computer Vision, 2023 <br> <br> <a href="https://arxiv.org/abs/2209.09341">[Paper]</a> <a href="https://ponimatkin.github.io/ssl-vos/index.html">[Project page]</a> <br> </h3> </div> -->A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation
This repository contains the official PyTorch implementation of the following paper.
A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation,
Georgy Ponimatkin, Nermin Samet, Yang Xiao, Yuming Du, Renaud Marlet, Vincent Lepetit,
WACV 2023. (arXiv pre-print, Project page)
Preparing the environment and data
To prepare the environment run the following commands:
conda env create --name ssl-vos python=3.8 pip
conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge
pip install scikit-learn opencv-python fast_slic imageio matplotlib scikit-image easydict path.py
python setup.py build
python setup.py install
To download the required assets run bash get_raw_data.sh
and bash download_models.sh
. Data can be prepared by
running the following script
python prepare_data.py
Please refer to ARFlow and RAFT repositories in order to prepare rest of your environment.
Running the pipeline
Our approach requires three steps to run produce segmentations. At first, extract DINO features and optical flows by via
python extract_dino_features.py --dataset davis
python generate_flow_arflow.py --dataset davis --step 1
The second step consists of extracting the initial eigenvectors, which can be done by
python generate_pic_eigenvectors.py --use-gpu --dataset davis
Global optimization then can be run via
python global_optimization.py --dataset davis
The masks can be generated from the obtained solution by running
python extract_masks.py --dataset davis --method name_of_the_folder_in_data/davis
<!---
## License
Our code is released under the MIT License (refer to the [LICENSE](readme/LICENSE) file for details). Our codebase is built using codebase of [DINO](https://github.com/facebookresearch/dino), [ARFlow](https://github.com/lliuz/ARFlow), [RAFT](https://github.com/princeton-vl/RAFT)
and [MoSeg](https://github.com/charigyang/motiongrouping). Please refer to the License of these works for more detail.
-->
Citation
If you use this code in your research, please cite the following paper:
G. Ponimatkin, N. Samet, Y. Xiao, Y. Du, R. Marlet and V. Lepetit "A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation", In IEEE Winter Conference on Applications of Computer Vision (WACV), 2023.
BibTeX entry:
@inproceedings{ponimatkin2023sslvos,
title= {A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation},
author={G. {Ponimatkin} and N. {Samet} and Y. {Xiao} and Y. {Du} and R. {Marlet} and V. {Lepetit}},
booktitle={Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV)},
year={2023}} }