Home

Awesome

KGReasoning

This repo contains several algorithms for multi-hop reasoning on knowledge graphs, including the official PyTorch implementation of Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs and a PyTorch implementation of Complex Query Answering with Neural Link Predictors.

Models

KG Data

The KG data (FB15k, FB15k-237, NELL995) mentioned in the BetaE paper and the Query2box paper can be downloaded here. Note the two use the same training queries, but the difference is that the valid/test queries in BetaE paper have a maximum number of answers, making it more realistic.

Each folder in the data represents a KG, including the following files.

We represent the query structures using a tuple in case we run out of names :), (credits to @michiyasunaga). For example, 1p queries: (e, (r,)) and 2i queries: ((e, (r,)),(e, (r,))). Check the code for more details.

Examples

Please refer to the examples.sh for the scripts of all 3 models on all 3 datasets.

Citations

If you use this repo, please cite the following paper.

@inproceedings{
 ren2020beta,
 title={Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs},
 author={Hongyu Ren and Jure Leskovec},
 booktitle={Neural Information Processing Systems},
 year={2020}
}