Home

Awesome

scalene

Scalene: a high-performance CPU, GPU and memory profiler for Python

by Emery Berger, Sam Stern, and Juan Altmayer Pizzorno.

Scalene community SlackScalene community Slack

PyPI Latest ReleaseAnaconda-Server BadgeDownloads Downloads Python versions License Twitter Follow

Ozsvald tweet

(tweet from Ian Ozsvald, author of High Performance Python)

Semantic Scholar success story

About Scalene

Scalene is a high-performance CPU, GPU and memory profiler for Python that does a number of things that other Python profilers do not and cannot do. It runs orders of magnitude faster than other profilers while delivering far more detailed information.

Quick Start

Installing Scalene:

python3 -m pip install -U scalene

or

conda install -c conda-forge scalene

Using Scalene:

Commonly used options:

scalene your_prog.py                             # full profile (outputs to web interface)
python3 -m scalene your_prog.py                  # equivalent alternative

scalene --cli your_prog.py                       # use the command-line only (no web interface)

scalene --cpu your_prog.py                       # only profile CPU
scalene --cpu --gpu your_prog.py                 # only profile CPU and GPU
scalene --cpu --gpu --memory your_prog.py        # profile everything (same as no options)

scalene --reduced-profile your_prog.py           # only profile lines with significant usage
scalene --profile-interval 5.0 your_prog.py      # output a new profile every five seconds

scalene (Scalene options) --- your_prog.py (...) # use --- to tell Scalene to ignore options after that point
scalene --help                                   # lists all options

To use Scalene programmatically in your code, invoke using scalene as above and then:

from scalene import scalene_profiler

# Turn profiling on
scalene_profiler.start()

# Turn profiling off
scalene_profiler.stop()

To use Scalene to profile specific functions, just use the @profile decorator and run it with Scalene:

# do not import profile!

@profile
def slow_function():
    import time
    time.sleep(3)

Web-based GUI

Scalene has both a CLI and a web-based GUI (demo here).

By default, once Scalene has profiled your program, it will open a tab in a web browser with an interactive user interface (all processing is done locally). Hover over bars to see breakdowns of CPU and memory consumption, and click on underlined column headers to sort the columns. The generated file profile.html is self-contained and can be saved for later use.

Scalene web GUI

Scalene Overview

Scalene talk (PyCon US 2021)

This talk presented at PyCon 2021 walks through Scalene's advantages and how to use it to debug the performance of an application (and provides some technical details on its internals). We highly recommend watching this video!

Scalene presentation at PyCon 2021

Fast and Accurate

Profiler accuracy

CPU profiling

GPU profiling

Memory profiling

Other features

Comparison to Other Profilers

Performance and Features

Below is a table comparing the performance and features of various profilers to Scalene.

Performance and feature comparison

Scalene has all of the following features, many of which only Scalene supports:

Output

If you include the --cli option, Scalene prints annotated source code for the program being profiled (as text, JSON (--json), or HTML (--html)) and any modules it uses in the same directory or subdirectories (you can optionally have it --profile-all and only include files with at least a --cpu-percent-threshold of time). Here is a snippet from pystone.py.

Example profile

Using Scalene

The following command runs Scalene on a provided example program.

scalene test/testme.py
<details> <summary> Click to see all Scalene's options (available by running with <code>--help</code>) </summary>
    % scalene --help
     usage: scalene [-h] [--outfile OUTFILE] [--html] [--reduced-profile]
                    [--profile-interval PROFILE_INTERVAL] [--cpu-only]
                    [--profile-all] [--profile-only PROFILE_ONLY]
                    [--use-virtual-time]
                    [--cpu-percent-threshold CPU_PERCENT_THRESHOLD]
                    [--cpu-sampling-rate CPU_SAMPLING_RATE]
                    [--malloc-threshold MALLOC_THRESHOLD]
     
     Scalene: a high-precision CPU and memory profiler.
     https://github.com/plasma-umass/scalene
     
     command-line:
        % scalene [options] yourprogram.py
     or
        % python3 -m scalene [options] yourprogram.py
     
     in Jupyter, line mode:
        %scrun [options] statement
     
     in Jupyter, cell mode:
        %%scalene [options]
        code...
        code...
     
     optional arguments:
       -h, --help            show this help message and exit
       --outfile OUTFILE     file to hold profiler output (default: stdout)
       --html                output as HTML (default: text)
       --reduced-profile     generate a reduced profile, with non-zero lines only (default: False)
       --profile-interval PROFILE_INTERVAL
                             output profiles every so many seconds (default: inf)
       --cpu-only            only profile CPU time (default: profile CPU, memory, and copying)
       --profile-all         profile all executed code, not just the target program (default: only the target program)
       --profile-only PROFILE_ONLY
                             profile only code in filenames that contain the given strings, separated by commas (default: no restrictions)
       --use-virtual-time    measure only CPU time, not time spent in I/O or blocking (default: False)
       --cpu-percent-threshold CPU_PERCENT_THRESHOLD
                             only report profiles with at least this percent of CPU time (default: 1%)
       --cpu-sampling-rate CPU_SAMPLING_RATE
                             CPU sampling rate (default: every 0.01s)
       --malloc-threshold MALLOC_THRESHOLD
                             only report profiles with at least this many allocations (default: 100)
     
     When running Scalene in the background, you can suspend/resume profiling
     for the process ID that Scalene reports. For example:
     
        % python3 -m scalene [options] yourprogram.py &
      Scalene now profiling process 12345
        to suspend profiling: python3 -m scalene.profile --off --pid 12345
        to resume profiling:  python3 -m scalene.profile --on  --pid 12345
</details>

Scalene with Jupyter

<details> <summary> Instructions for installing and using Scalene with Jupyter notebooks </summary>

This notebook illustrates the use of Scalene in Jupyter.

Installation:

!pip install scalene
%load_ext scalene

Line mode:

%scrun [options] statement

Cell mode:

%%scalene [options]
code...
code...
</details>

Installation

<details open> <summary>Using <code>pip</code> (Mac OS X, Linux, Windows, and WSL2)</summary>

Scalene is distributed as a pip package and works on Mac OS X, Linux (including Ubuntu in Windows WSL2) and (with limitations) Windows platforms. (Note: the Windows version isn't yet complete; it currently only supports CPU and GPU profiling.)

You can install it as follows:

  % pip install -U scalene

or

  % python3 -m pip install -U scalene

You may need to install some packages first.

See https://stackoverflow.com/a/19344978/4954434 for full instructions for all Linux flavors.

For Ubuntu/Debian:

  % sudo apt install git python3-all-dev
</details> <details> <summary>Using <code>Homebrew</code> (Mac OS X)</summary>

As an alternative to pip, you can use Homebrew to install the current version of Scalene from this repository:

  % brew tap plasma-umass/scalene
  % brew install --head plasma-umass/scalene/scalene
</details> <details> <summary>On ArchLinux</summary>

You can install Scalene on Arch Linux via the AUR package. Use your favorite AUR helper, or manually download the PKGBUILD and run makepkg -cirs to build. Note that this will place libscalene.so in /usr/lib; modify the below usage instructions accordingly.

</details>

Asked Questions

Q: Is there any way to get shorter profiles or do more targeted profiling?

A: Yes! There are several options:

  1. Use --reduced-profile to include only lines and files with memory/CPU/GPU activity.
  2. Use --profile-only to include only filenames containing specific strings (as in, --profile-only foo,bar,baz).
  3. Decorate functions of interest with @profile to have Scalene report only those functions.
  4. Turn profiling on and off programmatically by importing Scalene (import scalene) and then turning profiling on and off via scalene_profiler.start() and scalene_profiler.stop(). By default, Scalene runs with profiling on, so to delay profiling until desired, use the --off command-line option (python3 -m scalene --off yourprogram.py).

Q: How do I run Scalene in PyCharm?

A: In PyCharm, you can run Scalene at the command line by opening the terminal at the bottom of the IDE and running a Scalene command (e.g., python -m scalene <your program>). Use the options --cli, --html, and --outfile <your output.html> to generate an HTML file that you can then view in the IDE.

Q: How do I use Scalene with Django?

A: Pass in the --noreload option (see https://github.com/plasma-umass/scalene/issues/178).

Q: How do I use Scalene with PyTorch on the Mac?

A: Scalene works with PyTorch version 1.5.1 on Mac OS X. There's a bug in newer versions of PyTorch (https://github.com/pytorch/pytorch/issues/57185) that interferes with Scalene (discussion here: https://github.com/plasma-umass/scalene/issues/110), but only on Macs.

Technical Information

For technical details on Scalene, please see the following paper: Scalene: Scripting-Language Aware Profiling for Python (arXiv link).

Success Stories

If you use Scalene to successfully debug a performance problem, please add a comment to this issue!

Acknowledgements

Logo created by Sophia Berger.

This material is based upon work supported by the National Science Foundation under Grant No. 1955610. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.