Home

Awesome

Invertible Image Rescaling

This is the PyTorch implementation of paper: Invertible Image Rescaling (ECCV 2020 Oral). [link][arxiv].

2022/10 Update: Our paper "Invertible Rescaling Network and Its Extensions" has been accepted by IJCV. [link][arxiv]. We update the repository for experiments in the paper. The previous version can be found in the ECCV branch.

Dependencies and Installation

Dataset Preparation

Commonly used training and testing datasets can be downloaded here.

Get Started

Training and testing codes are in 'codes/'. Please see 'codes/README.md' for basic usages.

Invertible Architecture

Invertible Architecture

Quantitative Results

Quantitative evaluation results (PSNR / SSIM) of different downscaling and upscaling methods for image reconstruction on benchmark datasets: Set5, Set14, BSD100, Urban100, and DIV2K validation set. For our method, differences on average PSNR / SSIM from different z samples are less than 0.02. We report the mean result over 5 draws.

Downscaling & UpscalingScaleParamSet5Set14BSD100Urban100DIV2K
Bicubic & Bicubic2x/33.66 / 0.929930.24 / 0.868829.56 / 0.843126.88 / 0.840331.01 / 0.9393
Bicubic & SRCNN2x57.3K36.66 / 0.954232.45 / 0.906731.36 / 0.887929.50 / 0.8946
Bicubic & EDSR2x40.7M38.20 / 0.960634.02 / 0.920432.37 / 0.901833.10 / 0.936335.12 / 0.9699
Bicubic & RDN2x22.1M38.24 / 0.961434.01 / 0.921232.34 / 0.901732.89 / 0.9353
Bicubic & RCAN2x15.4M38.27 / 0.961434.12 / 0.921632.41 / 0.902733.34 / 0.9384
Bicubic & SAN2x15.7M38.31 / 0.962034.07 / 0.921332.42 / 0.902833.10 / 0.9370
TAD & TAU2x38.46 / –35.52 / –36.68 / –35.03 / –39.01 / –
CNN-CR & CNN-SR2x38.88 / –35.40 / –33.92 / –33.68 / –
CAR & EDSR2x51.1M38.94 / 0.965835.61 / 0.940433.83 / 0.926235.24 / 0.957238.26 / 0.9599
IRN (ours)2x1.66M43.99 / 0.987140.79 / 0.977841.32 / 0.987639.92 / 0.986544.32 / 0.9908
Downscaling & UpscalingScaleParamSet5Set14BSD100Urban100DIV2K
Bicubic & Bicubic4x/28.42 / 0.810426.00 / 0.702725.96 / 0.667523.14 / 0.657726.66 / 0.8521
Bicubic & SRCNN4x57.3K30.48 / 0.862827.50 / 0.751326.90 / 0.710124.52 / 0.7221
Bicubic & EDSR4x43.1M32.62 / 0.898428.94 / 0.790127.79 / 0.743726.86 / 0.808029.38 / 0.9032
Bicubic & RDN4x22.3M32.47 / 0.899028.81 / 0.787127.72 / 0.741926.61 / 0.8028
Bicubic & RCAN4x15.6M32.63 / 0.900228.87 / 0.788927.77 / 0.743626.82 / 0.808730.77 / 0.8460
Bicubic & ESRGAN4x16.3M32.74 / 0.901229.00 / 0.791527.84 / 0.745527.03 / 0.815230.92 / 0.8486
Bicubic & SAN4x15.7M32.64 / 0.900328.92 / 0.788827.78 / 0.743626.79 / 0.8068
TAD & TAU4x31.81 / –28.63 / –28.51 / –26.63 / –31.16 / –
CAR & EDSR4x52.8M33.88 / 0.917430.31 / 0.838229.15 / 0.800129.28 / 0.871132.82 / 0.8837
IRN (ours)4x4.35M36.19 / 0.945132.67 / 0.901531.64 / 0.882631.41 / 0.915735.07 / 0.9318

Qualitative Results

Qualitative results of upscaling the 4x downscaled images

Acknowledgement

The code is based on BasicSR, with reference of FrEIA.

Contact

If you have any questions, please contact mingqing_xiao@pku.edu.cn.