Awesome
Isotropic3D
Official implementation for Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding
| Project Page | Paper | Weight
https://github.com/pkunliu/Isotropic3D/assets/48075709/412a040e-386e-4520-82b6-0b0a1a217a1c
Installation
# torch2.0.1+cu118
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
pip install ninja
pip install -r requirements.txt
Quickstart
-
Download
isotropic3d.ckpt
from https://huggingface.co/pkunliu/Isotropic3D tockpt/isotropic3d.ckpt
-
We use the configuration with soft-shading. It would need an A100 GPU in most cases to compute normal. To generate 3D content, run:
export PYTHONPATH=$PYTHONPATH:./isotropic
python launch.py \
--config configs/isotropic3d-shading.yaml \
--train \
--gpu 0 \
system.guidance.cond_image_path=assets/wolf_rgba.png
Resume from checkpoints
If you want to resume from a checkpoint, do:
# resume training from the last checkpoint, you may replace last.ckpt with any other checkpoints
python launch.py --config path/to/trial/dir/configs/parsed.yaml --train --gpu 0 resume=path/to/trial/dir/ckpts/last.ckpt
# if the training has completed, you can still continue training for a longer time by setting trainer.max_steps
python launch.py --config path/to/trial/dir/configs/parsed.yaml --train --gpu 0 resume=path/to/trial/dir/ckpts/last.ckpt trainer.max_steps=20000
If you want to test from a checkpoint, do:
# you can also perform testing using resumed checkpoints
python launch.py --config path/to/trial/dir/configs/parsed.yaml --test --gpu 0 resume=path/to/trial/dir/ckpts/last.ckpt
# note that the above commands use parsed configuration files from previous trials
# which will continue using the same trial directory
# if you want to save to a new trial directory, replace parsed.yaml with raw.yaml in the command
# only load weights from saved checkpoint but dont resume training (i.e. dont load optimizer state):
python launch.py --config path/to/trial/dir/configs/parsed.yaml --train --gpu 0 system.weights=path/to/trial/dir/ckpts/last.ckpt
Export meshes
# exports obj+mtl
python launch.py --config path/to/trial/dir/configs/parsed.yaml --export --gpu 0 resume=path/to/trial/dir/ckpts/last.ckpt system.exporter_type=mesh-exporter
# specify system.exporter.fmt=obj to get obj with vertex colors
# you may also add system.exporter.save_uv=false to accelerate the process, suitable for a quick peek of the result
python launch.py --config path/to/trial/dir/configs/parsed.yaml --export --gpu 0 resume=path/to/trial/dir/ckpts/last.ckpt system.exporter_type=mesh-exporter system.exporter.fmt=obj
# use marching cubes of higher resolutions to get more detailed models
python launch.py --config path/to/trial/dir/configs/parsed.yaml --export --gpu 0 resume=path/to/trial/dir/ckpts/last.ckpt system.exporter_type=mesh-exporter system.geometry.isosurface_method=mc-cpu system.geometry.isosurface_resolution=256
Acknowledgement
Thanks to the maintainers for their contribution to the community!
Citing
If you find Isotropic3D helpful, please consider citing:
@article{liu2024isotropic3d,
title={Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding},
author={Liu, Pengkun and Wang, Yikai and Sun, Fuchun and Li, Jiafang and Xiao, Hang and Xue, Hongxiang and Wang, Xinzhou},
journal={arXiv preprint arXiv:2403.10395},
year={2024}
}