Awesome
PointMBF: A Multi-scale Bidirectional Fusion Network for Unsupervised RGB-D Point Cloud Registration
This repository represents the official implementation of the paper:
PointMBF: A Multi-scale Bidirectional Fusion Network for Unsupervised RGB-D Point Cloud Registration
Instructions
This code has been tested on
- Python 3.8, PyTorch 1.7.1, CUDA 11.1, GeForce RTX 3090
Requirements
To create a virtual environment and install the required dependences please run:
git clone https://github.com/phdymz/PointMBF.git
conda create --name PointMBF python=3.8
conda activate PointMBF
pip install -r requirements.txt
Make dataset
You need to download the RGB-D version of 3DMatch dataset and ScanNet dataset in advance. Details can refer to URR.
3DMatch
python create_3dmatch_rgbd_dict.py --data_root 3dmatch_train.pkl train
python create_3dmatch_rgbd_dict.py --data_root 3dmatch_valid.pkl valid
python create_3dmatch_rgbd_dict.py --data_root 3dmatch_test.pkl test
ScanNet
python create_scannet_dict.py --data_root scannet_train.pkl train
python create_scannet_dict.py --data_root scannet_valid.pkl valid
python create_scannet_dict.py --data_root scannet_test.pkl test
Train on 3DMatch
python train.py --name RGBD_3DMatch --RGBD_3D_ROOT
Train on ScanNet
python train.py --name ScanNet --SCANNET_ROOT
Inference
python test.py --checkpoint --SCANNET_ROOT
Pretrained Model
We provide the pre-trained model of PointMBF in BaiDuyun, Password: pmbf.
Acknowledgments
In this project we use (parts of) the official implementations of the followin works:
We thank the respective authors for open sourcing their methods.
Citation
If you find this code useful for your work or use it in your project, please consider citing:
@article{yuan2023pointmbf,
title={PointMBF: A Multi-scale Bidirectional Fusion Network for Unsupervised RGB-D Point Cloud Registration},
author={Yuan, Mingzhi and Fu, Kexue and Li, Zhihao and Meng, Yucong and Wang, Manning},
journal={arXiv preprint arXiv:2308.04782},
year={2023}
}