Home

Awesome

realistic-ssl-evaluation-pytorch

This repository is reimplementation of Realistic Evaluation of Deep Semi-Supervised Learning Algorithms, by Avital Oliver*, Augustus Odena*, Colin Raffel*, Ekin D. Cubuk, and Ian J. Goodfellow, arXiv preprint arXiv:1804.09170. Original repo is here.

NOTE: This repository has been deprecated. Please see here, which includes UDA and FixMatch.

Requirements

How to run

Prepare dataset

python build_dataset.py

Default setting is SVHN 1000 labels. If you try other settings, please check the options first by python build_dataset.py -h.

Running experiments

python train.py

Default setting is VAT. Please check the options by python python train.py -h

Performance

WIP

algorithmpaperthis repo
cifar10 4k labelssvhn 1k labelscifar10 4k labelssvhn 1k labels
Supervised20.26 ±0.3812.83 ±0.4720.35±0.1412.33±0.25
Pi-Model16.37 ±0.637.19 ±0.2716.24±0.387.81±0.39
Mean Teacher15.87 ±0.285.65 ±0.4715.77±0.226.48±0.44
VAT13.86 ±0.275.63 ±0.2013.83±0.495.84±0.20
VAT+EM13.13 ±0.395.35 ±0.1913.30±0.275.76±0.13
Pseudo-Label17.78 ±0.577.62 ±0.29N/AN/A
ICT( 7.66 ±0.17 )( 3.53 ±0.07 )N/AN/A
MixMatch( 6.50 )( 3.27 ±0.31 )N/AN/A

NOTE: Experimental setting of ICT and MixMatch papers is different from this benchmark.

Reference