Awesome
CS230-Microcrystal-Facet-Segmentation
Microcrystal facet segmentation algorithm based on U-NET architecture.
Table of contents
General info
The goal of this project is to train an appropriate CNN architecture that is able to perform semantic segmentation of cuprous oxide Cu2O nanocrystal facets.
Baseline Model
keras implementation (https://github.com/divamgupta/image-segmentation-keras/)
Screenshots
Technologies
- python - version 3.6.5
- keras - version 2.3.0
- keras_segmentation
- opencv_python - version 4.2.0.32
- Augmentor - version 0.2.8
Code Examples
Show examples of usage:
from keras_segmentation.models.unet import unet_mini
model = unet_mini(n_classes=4, input_height=96, input_width=96 )
model.train(
train_images = "Dataset/train/",
train_annotations = "Dataset/train_labels/",
checkpoints_path = "Dataset/checkpoints",
val_images = "Dataset/test/",
val_annotations = "Dataset/test_labels/",
epochs=50, validate=True, batch_size=8,
optimizer_name="adam",
gen_use_multiprocessing=True,
auto_resume_checkpoint=False,
val_batch_size=2,
)
Features
List of features ready and TODOs for future development
- Train on 3 different U-NET architecture variants
Status
Project is: finished <!-- a normal html comment _finished_, _no longer continue_ and why?-->
Report
CS230 Winter 2020 (http://cs230.stanford.edu/projects_winter_2020/reports/32641590.pdf)
<!--## Inspiration--> <!--Add here credits. Project inspired by..., based on...--> <!--## Contact--> <!--Created by [@flynerdpl](https://www.flynerd.pl/) - feel free to contact me!-->