Awesome
<!-- README.md is generated from README.Rmd. Please edit that file -->MexBrewer <img src="man/figures/MexBrewer.png" align="right" width=300 />
<!-- badges: start -->
MexBrewer is a package with color palettes inspired by the works of Mexican painters and muralists. This package was motivated and draws heavily from the code of Blake R. Mills’s {MetBrewer}, the package with color palettes form the Metropolitan Museum of Art of New York. The structure of the package and coding, like {MetBrewer}, are based on {PNWColors} and {wesanderson}.
Installation
The package is available from CRAN:
install.packages("MexBrewer")
The development version of the package can be installed like so:
if (!require("remotes")) install.packages("remotes")
remotes::install_github("paezha/MexBrewer")
Artists
Electa Arenal
Revolución
This palette is called Revolucion
.
Olga Costa
Naturaleza
This palette is called Naturaleza
.
Ofrenda
This palette is called Ofrenda
.
Vendedora
This palette is called Vendedora
.
María Izquierdo
Alacena
This palette is called Alacena
.
La Tierra
This palette is called Tierra
.
Frida Khalo
La Casa Azul
These palettes are called Casita1
, Casita2
, and Casita3
. They are
inspired by the colors of Frida’s
home in Coyoacán, Mexico
City.
Rina Lazo
Venerable Abuelo Maiz
This palette is called Maiz
.
Fanny Rabel
La Ronda del Tiempo
This palette is called Ronda
.
Aurora Reyes
El atentado a las maestras rurales
This palette is called Atentado
.
Aurora, Concha, y Frida
This work of Aurora Rivera inspired three palettes, called Aurora
,
Concha
, and Frida
.
Remedios Varo
La Huida
This palette is called Huida
.
Taurus
This work of Remedios Varo inspired two palettes, called Taurus1
and
Taurus2
.
Examples
library(aRtsy) # Koen Derks' package for generative art
library(flametree) # Danielle Navarro's package for generative art
library(MexBrewer)
library(sf)
library(tidyverse)
Invoke data sets used in the examples:
data("mx_estados") # Simple features object with the boundaries of states in Mexico
data("df_mxstate_2020") # Data from {mxmaps }with population statistics at the state level
Join population statistics to state boundaries:
mx_estados <- mx_estados |>
left_join(df_mxstate_2020 |>
#Percentage of population that speak an indigenous language
mutate(pct_ind_lang = indigenous_language/pop * 100) |>
dplyr::transmute(pop2020 = pop,
am2020 = afromexican,
state_name,
pct_ind_lang),
by = c("nombre" = "state_name"))
Distribution of population by geographic region in Mexico:
ggplot(data = mx_estados,
aes(x = region, y = pop2020, fill = region)) +
geom_boxplot() +
scale_fill_manual(values = mex.brewer("Concha", n = 5)) +
theme_minimal()
<img src="man/figures/README-population-distribution-1.png" width="100%" />
Percentage of population who speak an indigenous language in 2020 by state:
ggplot() +
geom_sf(data = mx_estados,
aes(fill = pct_ind_lang),
color = "white",
size = 0.08) +
scale_fill_gradientn(colors = mex.brewer("Tierra")) +
theme_minimal()
<img src="man/figures/README-indigenous-languages-1.png" width="100%" />
Some Rtistry
Danielle Navarro’s {flametree}
The following three images were created using the {flametree} package.
# pick some colours
shades <- MexBrewer::mex.brewer("Vendedora") |>
as.vector()
# data structure defining the trees
dat <- flametree_grow(seed = 3563,
time = 11,
trees = 10)
# draw the plot
dat |>
flametree_plot(
background = shades[1],
palette = shades[2:length(shades)],
style = "nativeflora"
)
<img src="man/figures/README-flametree-1-1.png" width="100%" />
# pick some colours
shades <- MexBrewer::mex.brewer("Concha") |>
as.vector()
# data structure defining the trees
dat <- flametree_grow(seed = 3536,
time = 8,
trees = 6)
# draw the plot
dat |>
flametree_plot(
background = shades[1],
palette = rev(shades[2:length(shades)]),
style = "wisp"
)
<img src="man/figures/README-flametree-2-1.png" width="100%" />
# pick some colours
shades <- MexBrewer::mex.brewer("Maiz") |>
as.vector()
# data structure defining the trees
dat <- flametree_grow(seed = 3653,
time = 8,
trees = 6)
# draw the plot
dat |>
flametree_plot(
background = shades[1],
palette = shades[2:length(shades)],
style = "minimal"
)
<img src="man/figures/README-flametree-3-1.png" width="100%" />
Koen Derks’s aRtsy
The following three images were created using the {aRtsy} package.
Functions:
my_formula <- list(
x = quote(runif(1, -1, 1) * x_i^2 - sin(y_i^2)),
y = quote(runif(1, -1, 1) * y_i^3 - cos(x_i^2))
)
canvas_function(colors = mex.brewer("Atentado"),
polar = FALSE,
by = 0.005,
formula = my_formula)
<img src="man/figures/README-aRtsy-1-1.png" width="100%" />
Mosaic:
canvas_squares(colors = mex.brewer("Alacena"),
cuts = 20,
ratio = 1.5,
resolution = 200,
noise = TRUE)
<img src="man/figures/README-aRtsy-2-1.png" width="100%" />
Mandelbrot’s set:
canvas_mandelbrot(colors = mex.brewer("Naturaleza"),
zoom = 8,
iterations = 200,
resolution = 500)
<img src="man/figures/README-aRtsy-3-1.png" width="100%" />
Meghan S. Harris’s waves
These plots are adaptations of Meghan Harris’s artsy waves. Create data frames with wave functions:
##Set up the "range" on the x axis for horizontal waves=====
wave_theta <- seq(from = -pi,
to = -0,
by = 0.01)
# Create waves using functions
wave_1 <- data.frame(x = wave_theta) |>
mutate(y = (sin(x) * cos(2 * wave_theta) + exp(x * 2)))
wave_2 <- data.frame(x = wave_theta) |>
mutate(y = (0.5 * sin(x) * cos(2.0 * wave_theta) + exp(x)) - 0.5)
<!--
```r
ggplot() +
geom_ribbon(data = wave_1,
aes(x, min = y - 0.025,
ymax = y + 0.025),
color = "black",
fill = "orange") +
geom_ribbon(data = wave_2,
aes(x, min = y - 0.025,
ymax = y + 0.025),
color = "black",
fill = "blue")
```
<img src="man/figures/README-unnamed-chunk-7-1.png" width="100%" />
-->
Define a function to convert a single wave into a set of n
waves. The
function takes a data frame with a wave function and returns a data
frame with n
waves:
# Creating a function for iterations====
wave_maker <- function(wave_df, n, shift){
#Create an empty list to store our multiple dataframes(waves)#
wave_list<- list()
#Create a for loop to iteratively make "n" waves shifted a distance `shift` from each other #
for(i in seq_along(1:n)){
wave_list[[i]] <- wave_df |>
mutate(y = y - (shift * i),
group = i)
}
#return the completed data frame to the environment#
return(bind_rows(wave_list))
}
Create layered waves using the data frames with the wave functions above:
wave_layers <- rbind(wave_1 |>
wave_maker(n = 5,
shift = 0.075),
wave_2 |>
wave_maker(n = 5,
shift = 0.075) |>
mutate(group = group + 5)) # adjust the group counter to identify waves uniquely
Plot layered waves using cartesian coordinates and palette Ofrenda
:
ggplot(wave_layers) +
geom_rect(aes(xmin = -pi,
xmax = -0.0,
ymin = min(y) - 0.50,
ymax = max(y) + 0.30 ),
size = 2.5,
color = mex.brewer("Ofrenda")[6],
fill = mex.brewer("Ofrenda")[4]) +
geom_rect(aes(xmin = -pi,
xmax = -0.0,
ymin = min(y) - 0.50,
ymax = max(y) + 0.30 ),
size = 1,
color = "black",
fill = NA) +
geom_ribbon(aes(x,
ymin = y - 0.025 * 4 * x,
ymax = y + 0.015 * 10 * x,
group = group,
fill = group),
color = "black",
size = 0.5) +
scale_fill_gradientn(colors = mex.brewer("Ofrenda"))+
theme_void() +
theme(legend.position = "none")
#> Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
#> ℹ Please use `linewidth` instead.
<img src="man/figures/README-unnamed-chunk-10-1.png" width="100%" />
Plot layered waves using polar coordinates and palette Atentado
:
ggplot(wave_layers) +
geom_rect(aes(xmin = -pi,
xmax = -0.0,
ymin = min(y) - 0.45,
ymax = max(y) + 0.30 ),
size = 2.5,
color = mex.brewer("Atentado")[6],
fill = mex.brewer("Atentado")[3]) +
geom_rect(aes(xmin = -pi,
xmax = -0.0,
ymin = min(y) - 0.45,
ymax = max(y) + 0.30 ),
size = 1,
color = "black",
fill = NA) +
geom_ribbon(aes(x,
ymin = y - 0.025 * 4 * x,
ymax = y + 0.015 * 10 * x,
group = group,
fill = group),
color = "black",
size = 0.5) +
scale_fill_gradientn(colors = mex.brewer("Atentado")) +
coord_polar(theta = "x",
start = 0,
direction = 1,
clip = "on") +
theme_void() +
theme(legend.position = "none")
<img src="man/figures/README-unnamed-chunk-11-1.png" width="100%" />