Home

Awesome

<img src="DOC/logo-text.png" height=100></img>

Circle CI appveyor Go Report Card Release Docker Google Group Slack

rqlite is an easy-to-use, lightweight, distributed relational database, which uses SQLite as its storage engine.

rqlite is simple to deploy, operating and accessing it is very straightforward, and its clustering capabilities provide you with fault-tolerance and high-availability. rqlite is available for Linux, macOS, and Microsoft Windows.

Check out the rqlite FAQ.

Why?

rqlite gives you the functionality of a rock solid, fault-tolerant, replicated relational database, but with very easy installation, deployment, and operation. With it you've got a lightweight and reliable distributed relational data store. Think etcd or Consul, but with relational data modelling also available.

You could use rqlite as part of a larger system, as a central store for some critical relational data, without having to run larger, more complex distributed databases.

Finally, if you're interested in understanding how distributed systems actually work, rqlite is a good example to study. Much thought has gone into its design and implementation, with clear separation between the various components, including storage, distributed consensus, and API.

How?

rqlite uses Raft to achieve consensus across all the instances of the SQLite databases, ensuring that every change made to the system is made to a quorum of SQLite databases, or none at all. You can learn more about the design here.

Key features

Quick Start

The quickest way to get running is to download a pre-built release binary, available on the GitHub releases page. Once installed, you can start a single rqlite node like so:

rqlited -node-id 1 ~/node.1

This single node automatically becomes the leader. You can pass -h to rqlited to list all configuration options.

Docker

docker run -p4001:4001 rqlite/rqlite

Check out the rqlite Docker page for more details on running nodes via Docker.

Homebrew

brew install rqlite

Forming a cluster

While not strictly necessary to run rqlite, running multiple nodes means you'll have a fault-tolerant cluster. Start two more nodes, allowing the cluster to tolerate the failure of a single node, like so:

rqlited -node-id 2 -http-addr localhost:4003 -raft-addr localhost:4004 -join http://localhost:4001 ~/node.2
rqlited -node-id 3 -http-addr localhost:4005 -raft-addr localhost:4006 -join http://localhost:4001 ~/node.3

This demonstration shows all 3 nodes running on the same host. In reality you probably wouldn't do this, and then you wouldn't need to select different -http-addr and -raft-addr ports for each rqlite node.

With just these few steps you've now got a fault-tolerant, distributed relational database. For full details on creating and managing real clusters, including running read-only nodes, check out this documentation.

Inserting records

Let's insert some records via the rqlite CLI, using standard SQLite commands. Once inserted, these records will be replicated across the cluster, in a durable and fault-tolerant manner.

$ rqlite
127.0.0.1:4001> CREATE TABLE foo (id INTEGER NOT NULL PRIMARY KEY, name TEXT)
0 row affected (0.000668 sec)
127.0.0.1:4001> .schema
+-----------------------------------------------------------------------------+
| sql                                                                         |
+-----------------------------------------------------------------------------+
| CREATE TABLE foo (id INTEGER NOT NULL PRIMARY KEY, name TEXT)               |
+-----------------------------------------------------------------------------+
127.0.0.1:4001> INSERT INTO foo(name) VALUES("fiona")
1 row affected (0.000080 sec)
127.0.0.1:4001> SELECT * FROM foo
+----+-------+
| id | name  |
+----+-------+
| 1  | fiona |
+----+-------+

Limitations

Pronunciation?

How do I pronounce rqlite? For what it's worth I try to pronounce it "ree-qwell-lite". But it seems most people, including me, often pronouce it "R Q lite".