Home

Awesome

Rpollution <img src="man/figures/logo.png" align="right" width = "15%">

The goal of Rpollution is to assemble R functions to analyse air pollution data.

Installation

You can install Rpollution from github with:

# install.packages("remotes")
remotes::install_github("openvironment/Rpollution")

CETESB scraper

To scrape data from the CETESB qualar system, use the function scraper_cetesb().

library(Rpollution)

scraper_cetesb(
  parameter = 63, 
  station = 72, 
  start = "01/01/2018", 
  end = "31/01/2018", 
  login = "login", 
  password = "password"
)

To see a list of parameter and station IDs, use the objects cetesb_param_ids and cetesb_station_ids.

cetesb_param_ids
#> # A tibble: 20 x 3
#>       id param_abbrev param                              
#>    <int> <chr>        <chr>                              
#>  1    61 BEN          Benzeno                            
#>  2    16 CO           Monóxido de Carbono                
#>  3    23 DV           Direção do Vento                   
#>  4    21 DVG          Direção do Vento Global            
#>  5    19 ERT          Enxofre Reduzido Total             
#>  6    59 HCNM         Hidrocarbonetos Totais menos Metano
#>  7    12 MP10         Partículas Inaláveis               
#>  8    57 MP2.5        Partículas Inaláveis Finas         
#>  9    17 NO           Monóxido de Nitrogênio             
#> 10    15 NO2          Dióxido de Nitrogênio              
#> 11    18 NOx          Óxidos de Nitrogênio               
#> 12    63 O3           Ozônio                             
#> 13    29 PRESS        Pressão Atmosférica                
#> 14    26 RADG         Radiação Solar Global              
#> 15    56 RADUV        Radiação Ultra-violeta             
#> 16    13 SO2          Dióxido de Enxofre                 
#> 17    25 TEMP         Temperatura do Ar                  
#> 18    62 TOL          Tolueno                            
#> 19    28 UR           Umidade Relativa do Ar             
#> 20    24 VV           Velocidade do Vento
cetesb_station_ids
#> # A tibble: 62 x 25
#>       id stationname initial_date BEN   CO    ERT   MP10  MP2.5 NO    NO2  
#>    <int> <chr>       <chr>        <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#>  1    65 Mauá        01/01/1998   <NA>  <NA>  <NA>  <NA>  <NA>  <NA>  <NA> 
#>  2    66 Cubatão-V.… 01/01/1998   <NA>  <NA>  <NA>  <NA>  <NA>  <NA>  <NA> 
#>  3    67 Sorocaba    01/01/1998   <NA>  <NA>  <NA>  <NA>  <NA>  <NA>  <NA> 
#>  4    73 Congonhas   01/01/1998   no    yes   no    yes   yes   yes   yes  
#>  5    87 Cubatão-Ce… 01/01/1998   <NA>  <NA>  <NA>  <NA>  <NA>  <NA>  <NA> 
#>  6    88 S.José Cam… 01/01/1998   <NA>  <NA>  <NA>  <NA>  <NA>  <NA>  <NA> 
#>  7    89 Campinas-C… 01/01/1998   <NA>  <NA>  <NA>  <NA>  <NA>  <NA>  <NA> 
#>  8    91 Cerqueira … 01/01/1998   no    yes   no    yes   no    yes   yes  
#>  9    92 Diadema     01/01/1998   <NA>  <NA>  <NA>  <NA>  <NA>  <NA>  <NA> 
#> 10    95 Cid.Univer… 01/01/1998   no    hist  no    no    yes   yes   yes  
#> # … with 52 more rows, and 15 more variables: Nox <chr>, O3 <chr>, SO2 <chr>,
#> #   TOL <chr>, DV <chr>, DVG <chr>, PRESS <chr>, RADG <chr>, RADUV <chr>,
#> #   TEMP <chr>, UR <chr>, VV <chr>, address <chr>, lat <int>, long <int>

If you substitute the values login and password by your login and password from the Qualar system, this example will return the hourly NO concentrations from the Pinheiros station for January 2018.