Home

Awesome

HyperCoast

<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->

All Contributors

<!-- ALL-CONTRIBUTORS-BADGE:END -->

image image image image Conda Recipe Conda Downloads JOSS

A Python Package for Visualizing and Analyzing Hyperspectral Data in Coastal Environments

Introduction

HyperCoast is a Python package designed to provide an accessible and comprehensive set of tools for visualizing and analyzing hyperspectral data in coastal environments. Hyperspectral data refers to the information collected by sensors that capture light across a wide range of wavelengths, beyond what the human eye can see. This data allows scientists to detect and analyze various materials and conditions on the Earth's surface with great detail. Unlike multispectral data, which captures light in a limited number of broad wavelength bands (typically 3 to 10), hyperspectral data captures light in many narrow, contiguous wavelength bands, often numbering in the hundreds. This provides much more detailed spectral information. Leveraging the capabilities of popular packages like Leafmap and PyVista, HyperCoast streamlines the exploration and interpretation of complex hyperspectral remote sensing data from existing spaceborne and airborne missions. It is also poised to support future hyperspectral missions, such as NASA's SBG and GLIMR. It enables researchers and environmental managers to gain deeper insights into the dynamic processes occurring in aquatic environments.

HyperCoast supports the reading and visualization of hyperspectral data from various missions, including AVIRIS, NEON, PACE, EMIT, and DESIS, along with other datasets like ECOSTRESS. Users can interactively explore hyperspectral data, extract spectral signatures, change band combinations and colormaps, visualize data in 3D, and perform interactive slicing and thresholding operations (see Figure 1). Additionally, by leveraging the earthaccess package, HyperCoast provides tools for interactively searching NASA's hyperspectral data. This makes HyperCoast a versatile and powerful tool for working with hyperspectral data globally, with a particular focus on coastal regions.

EMIT Figure 1. An example of visualizing NASA EMIT hyperspectral data using HyperCoast.

Citations

If you find HyperCoast useful in your research, please consider citing the following papers to support us. Thank you!

Features

Demos

Cube

Slicing

Slicing

ERA5

colormap

AVIRIS

DESIS

EMIT

PACE

NEON

Chla

Acknowledgement

The HyperCoast project draws inspiration from the nasa/EMIT-Data-Resources repository. Credits to the original authors. We also acknowledge the NASA EMIT program support through grant no. 80NSSC24K0865.

License

HyperCoast is released under the MIT License. However, some of the modules in HyperCoast adapt code from other open-source projects, which may have different licenses. Please refer to the license notice in each module for more information. Credits to the original authors.

Contributors

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <table> <tbody> <tr> <td align="center" valign="top" width="14.28%"><a href="https://github.com/bingqing-liu"><img src="https://avatars.githubusercontent.com/u/123585527?v=4?s=100" width="100px;" alt="Bingqing Liu"/><br /><sub><b>Bingqing Liu</b></sub></a><br /><a href="https://github.com/opengeos/HyperCoast/commits?author=bingqing-liu" title="Code">💻</a> <a href="#design-bingqing-liu" title="Design">🎨</a> <a href="#ideas-bingqing-liu" title="Ideas, Planning, & Feedback">🤔</a></td> <td align="center" valign="top" width="14.28%"><a href="https://gishub.org"><img src="https://avatars.githubusercontent.com/u/5016453?v=4?s=100" width="100px;" alt="Qiusheng Wu"/><br /><sub><b>Qiusheng Wu</b></sub></a><br /><a href="https://github.com/opengeos/HyperCoast/commits?author=giswqs" title="Code">💻</a> <a href="#design-giswqs" title="Design">🎨</a> <a href="#maintenance-giswqs" title="Maintenance">🚧</a></td> <td align="center" valign="top" width="14.28%"><a href="https://auspatious.com"><img src="https://avatars.githubusercontent.com/u/3445853?v=4?s=100" width="100px;" alt="Alex Leith"/><br /><sub><b>Alex Leith</b></sub></a><br /><a href="https://github.com/opengeos/HyperCoast/commits?author=alexgleith" title="Code">💻</a> <a href="https://github.com/opengeos/HyperCoast/pulls?q=is%3Apr+reviewed-by%3Aalexgleith" title="Reviewed Pull Requests">👀</a></td> <td align="center" valign="top" width="14.28%"><a href="https://slowy-portofolio-website.vercel.app/"><img src="https://avatars.githubusercontent.com/u/40540262?v=4?s=100" width="100px;" alt="arfy slowy"/><br /><sub><b>arfy slowy</b></sub></a><br /><a href="https://github.com/opengeos/HyperCoast/commits?author=slowy07" title="Code">💻</a> <a href="#maintenance-slowy07" title="Maintenance">🚧</a></td> <td align="center" valign="top" width="14.28%"><a href="http://tucson.ars.ag.gov"><img src="https://avatars.githubusercontent.com/u/20215136?v=4?s=100" width="100px;" alt="Guillermo E. Ponce-Campos"/><br /><sub><b>Guillermo E. Ponce-Campos</b></sub></a><br /><a href="https://github.com/opengeos/HyperCoast/commits?author=gponce-ars" title="Code">💻</a> <a href="https://github.com/opengeos/HyperCoast/issues?q=author%3Agponce-ars" title="Bug reports">🐛</a></td> <td align="center" valign="top" width="14.28%"><a href="https://www.hereon.de"><img src="https://avatars.githubusercontent.com/u/2676409?v=4?s=100" width="100px;" alt="Carsten Lemmen"/><br /><sub><b>Carsten Lemmen</b></sub></a><br /><a href="https://github.com/opengeos/HyperCoast/pulls?q=is%3Apr+reviewed-by%3Aplatipodium" title="Reviewed Pull Requests">👀</a></td> </tr> </tbody> </table> <!-- markdownlint-restore --> <!-- prettier-ignore-end --> <!-- ALL-CONTRIBUTORS-LIST:END --> <!-- prettier-ignore-start --> <!-- markdownlint-disable --> <!-- markdownlint-restore --> <!-- prettier-ignore-end --> <!-- ALL-CONTRIBUTORS-LIST:END -->