Home

Awesome

Status: Archive (code is provided as-is, no updates expected)

image-gpt

Code and models from the paper "Generative Pretraining from Pixels".

Supported Platforms:

Install

You can get miniconda from https://docs.conda.io/en/latest/miniconda.html, or install the dependencies shown below manually.

conda create --name image-gpt python=3.7.3
conda activate image-gpt

conda install numpy=1.16.3
conda install tensorflow-gpu=1.13.1

conda install imageio=2.8.0
conda install requests=2.21.0
conda install tqdm=4.46.0

Usage

This repository is meant to be a starting point for researchers and engineers to experiment with image GPT (iGPT). Our code forks GPT-2 to highlight that it can be easily applied across domains. The diff from gpt-2/src/model.py to image-gpt/src/model.py includes a new activation function, renaming of several variables, and the introduction of a start-of-sequence token, none of which change the model architecture.

Downloading Pre-trained Models

To download a model checkpoint, run download.py. The --model argument should be one of "s", "m", or "l", and the --ckpt argument should be one of "131000", "262000", "524000", or "1000000".

python download.py --model s --ckpt 1000000

This command downloads the iGPT-S checkpoint at 1M training iterations. The default download directory is set to /root/downloads/, and can be changed using the --download_dir argument.

Downloading Datasets

To download datasets, run download.py with the --dataset argument set to "imagenet" or "cifar10".

python download.py --model s --ckpt 1000000 --dataset imagenet

This command additionally downloads 32x32 ImageNet encoded with the 9-bit color palette described in the paper. The datasets we provide are center-cropped images intended for evaluation; random cropped images are required to faithfully replicate training.

Downloading Color Clusters

To download the color cluster file defining our 9-bit color palette, run download.py with the --clusters flag set.

python download.py --model s --ckpt 1000000 --dataset imagenet --clusters

This command additionally downloads the color cluster file. src/run.py:sample shows how to decode from 9-bit color to RGB and src/utils.py:color_quantize shows how to go the other way around.

Sampling

Once the desired checkpoint and color cluster file are downloaded, we can run the script in sampling mode. The following commands sample from iGPT-S, iGPT-M, and iGPT-L respectively:

python src/run.py --sample --n_embd 512  --n_head 8  --n_layer 24
python src/run.py --sample --n_embd 1024 --n_head 8  --n_layer 36
python src/run.py --sample --n_embd 1536 --n_head 16 --n_layer 48

If your data is not in /root/downloads/, set --ckpt_path and --color_cluster_path manually. To run on fewer than 8 GPUs, use a command of the following form:

CUDA_VISIBLE_DEVICES=0,1 python src/run.py --sample --n_embd 512  --n_head 8  --n_layer 24 --n_gpu 2

Evaluating

Once the desired checkpoint and evaluation dataset are downloaded, we can run the script in evaluation mode. The following commands evaluate iGPT-S, iGPT-M, and iGPT-L on ImageNet respectively:

python src/run.py --eval --n_embd 512  --n_head 8  --n_layer 24
python src/run.py --eval --n_embd 1024 --n_head 8  --n_layer 36
python src/run.py --eval --n_embd 1536 --n_head 16 --n_layer 48

If your data is not in /root/downloads/, set --ckpt_path and --data_path manually. You should see that the test generative losses are 2.0895, 2.0614, and 2.0466, matching Figure 3 in the paper.

Citation

Please use the following bibtex entry:

@article{chen2020generative,
  title={Generative Pretraining from Pixels},
  author={Chen, Mark and Radford, Alec and Child, Rewon and Wu, Jeff and Jun, Heewoo and Dhariwal, Prafulla and Luan, David and Sutskever, Ilya},
  year={2020}
}

License

Modified MIT