Home

Awesome

Deep Multilingual Punctuation Prediction

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

This uses our "FullStop" model that we trained on the Europarl Dataset. Please note that this dataset consists of political speeches. Therefore the model might perform differently on texts from other domains.

The code restores the following punctuation markers: "." "," "?" "-" ":"

Video Sample

Install

To get started install the package from pypi:

pip install deepmultilingualpunctuation

Usage

The PunctuationModel class an process texts of any length. Note that processing of very long texts can be time consuming.

Restore Punctuation

from deepmultilingualpunctuation import PunctuationModel

model = PunctuationModel()
text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau Müller"
result = model.restore_punctuation(text)
print(result)

output

My name is Clara and I live in Berkeley, California. Ist das eine Frage, Frau Müller?

Predict Labels

from deepmultilingualpunctuation import PunctuationModel

model = PunctuationModel()
text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau Müller"
clean_text = model.preprocess(text)
labled_words = model.predict(clean_text)
print(labled_words)

output

[['My', '0', 0.9999887], ['name', '0', 0.99998665], ['is', '0', 0.9998579], ['Clara', '0', 0.6752215], ['and', '0', 0.99990904], ['I', '0', 0.9999877], ['live', '0', 0.9999839], ['in', '0', 0.9999515], ['Berkeley', ',', 0.99800044], ['California', '.', 0.99534047], ['Ist', '0', 0.99998784], ['das', '0', 0.99999154], ['eine', '0', 0.9999918], ['Frage', ',', 0.99622655], ['Frau', '0', 0.9999889], ['Müller', '?', 0.99863917]]

Languages

Models

LanguagesModel
English, Italian, French and Germanoliverguhr/fullstop-punctuation-multilang-large
English, Italian, French, German and Dutcholiverguhr/fullstop-punctuation-multilingual-sonar-base
Dutcholiverguhr/fullstop-dutch-sonar-punctuation-prediction

Community Models

LanguagesModel
English, German, French, Spanish, Bulgarian, Italian, Polish, Dutch, Czech, Portugese, Slovak, Sloveniankredor/punctuate-all
Catalansoftcatala/fullstop-catalan-punctuation-prediction

You can use different models by setting the model parameter:

model = PunctuationModel(model = "oliverguhr/fullstop-dutch-punctuation-prediction")

Where do I find the code and can I train my own model?

Yes you can! For complete code of the reareach project take a look at this repository.

There is also an guide on how to fine tune this model for you data / language.

Results

The performance differs for the single punctuation markers as hyphens and colons, in many cases, are optional and can be substituted by either a comma or a full stop. The model achieves the following F1 scores for the different languages:

LabelENDEFRIT
00.9910.9970.9920.989
.0.9480.9610.9450.942
?0.8900.8930.8710.832
,0.8190.9450.8310.798
:0.5750.6520.6200.588
-0.4250.4350.4310.421
macro average0.7750.8140.7820.762

References

Please cite us if you found this useful:

@article{guhr-EtAl:2021:fullstop,
  title={FullStop: Multilingual Deep Models for Punctuation Prediction},
  author    = {Guhr, Oliver  and  Schumann, Anne-Kathrin  and  Bahrmann, Frank  and  Böhme, Hans Joachim},
  booktitle      = {Proceedings of the Swiss Text Analytics Conference 2021},
  month          = {June},
  year           = {2021},
  address        = {Winterthur, Switzerland},
  publisher      = {CEUR Workshop Proceedings},  
  url       = {http://ceur-ws.org/Vol-2957/sepp_paper4.pdf}
}