Home

Awesome

Travis CI Codecov Code Climate Apoia.se

Perfil Político

A platform for profiling candidates in Brazilian 2022 General Election, based entirely on open data.

Install

This project requires Docker and Docker Compose.

Settings

To run the API, you must copy the .env.sample to a .env file. You can edit it accordingly if you want run in a production env.

Creating the container

You need to create the docker container:

$ docker-compose up -d

Note: You can use docker compose instead of docker-compose in this project.

Database initial setup

You should create your database by applying migrations:

$ docker-compose run --rm django ./manage.py migrate

Running

To run the project locally, you can simply use this command:

$ docker-compose up

The website and API will be available at localhost:8000 and the Jupyter at localhost:8888.

Bringing data into your database

Your local data/ directory is mapped, inside the container, to /mnt/data. Each command uses a CSV (compressed as .xz or not) from a public and available source. Use --help for more info. Yet some extra data can be generated with some Django custom commands.

Once you have download the datasets to data/, you can create your own database from scratch running:

$ docker-compose run --rm django ./manage.py load_affiliations /mnt/data/filiacao.csv
$ docker-compose run --rm django ./manage.py load_candidates /mnt/data/candidatura.csv
$ docker-compose run --rm django ./manage.py link_affiliations_and_candidates
$ docker-compose run --rm django ./manage.py link_politicians_and_election_results
$ docker-compose run --rm django ./manage.py load_assets /mnt/data/bemdeclarado.csv
$ docker-compose run --rm django ./manage.py pre_calculate_stats
$ docker-compose run --rm django ./manage.py load_bills /mnt/data/senado.csv
$ docker-compose run --rm django ./manage.py load_bills /mnt/data/camara.csv
$ docker-compose run --rm django ./manage.py load_income_statements /mnt/data/receita.csv
# make sure to read the instructions on populate_company_info.sql before running the next command
$ docker-compose run --rm postgres psql -U perfilpolitico < populate_company_info.sql

:warning: Note that it will change the primary keys for all candidates in the database! So be careful on running it for production environment because some endpoints as /api/candidate/<pk>/ depends on this primary key to retrieve the correct data.

Or you can update the data from your database using the commands:

$ docker-compose run --rm django ./manage.py unlink_and_delete_politician_references
$ docker-compose run --rm django ./manage.py load_affiliations /mnt/data/filiacao.csv clean-previous-data
$ docker-compose run --rm django ./manage.py update_or_create_candidates /mnt/data/candidatura.csv
$ docker-compose run --rm django ./manage.py link_affiliations_and_candidates
$ docker-compose run --rm django ./manage.py link_politicians_and_election_results
$ docker-compose run --rm django ./manage.py load_assets /mnt/data/bemdeclarado.csv clean-previous-data
$ docker-compose run --rm django ./manage.py pre_calculate_stats
$ docker-compose run --rm django ./manage.py load_bills /mnt/data/senado.csv clean-previous-data
$ docker-compose run --rm django ./manage.py load_bills /mnt/data/camara.csv

Note: The code only updates data coming from the csv's to the database. It does not consider the possibility of changing data that is already in the database but does not appear in the csv for some reason (in this case the data in the database is kept untouched). Commands passing the clean-previous-data-option will replace all the data for the respective csv, thus changing all primary keys.

API

GET /api/candidate/<year>/<state>/<post>/

List all candidates from a certain state to a given post. For example:

/api/candidate/2018/df/deputado-distrital/

Post options for 2018 are:

State options are the abbreviation of the 27 Brazilian states, plus br for national election posts.

GET /api/candidate/<pk>/

Returns the details of a given candidate.

GET /api/economic-bonds/candidate/<pk>/

Get electoral income history for a given candidate and companies that have a partnership.

Returns an object with the structure:

{
  "companies_associated_with_politician": [
    {
      "cnpj": string,
      "company_name": string,
      "main_cnae": string,
      "secondary_cnaes": string (cnaes separated by ','),
      "uf": string,
      "foundation_date": string (date format 'YYYY/MM/DD'),
      "participation_start_date": string (date format 'YYYY/MM/DD')
    }
    // ... other companies in the same format as above ...
  ],
  "election_income_history": [
    {
      "year": int,
      "value": float,
      "donor_name": string,
      "donor_taxpayer_id": string
      "donor_company_name": string
      "donor_company_cnpj": string
      "donor_economic_sector_code": string,
      "donor_secondary_sector_codes": string
    },
    // ... other income statements in the same format as above ...
  ]
}

GET /api/stats/<year>/<post>/<characteristic>/

Get national statistics for a given characteristic in a elected post.

Post options are:

Characteristic options are:

GET /api/stats/<state>/<year>/<post>/<characteristic>/

Same as above but aggregated by state.

GET /api/asset-stats/

Returns an object with a key called mediana_patrimonios that is a list with the median of elected people's asset value aggregated by year.

optionally you can add query parameters to filter the results by state or by the candidate post (the valid posts are the same ones that are in the list above).

These parameters can support multiple values if you wish to filter by more than one thing.

Ex: /api/asset-stats?state=MG&state=RJ&candidate_post=governador&candidate_post=prefeito

Tests

$ docker-compose run --rm django py.test
$ docker-compose run --rm django black . --check