Home

Awesome

DISCLAIMER: this model is not used clinically at NYU Langone Health. As it was created in 2019, its accuracy is far behind the strongest model we trained since then. If you are interested in discussing our recent models in any capacity, please email Krzysztof J. Geras.

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Introduction

This is an implementation of the model used for breast cancer classification as described in our paper Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening. The implementation allows users to get breast cancer predictions by applying one of our pretrained models: a model which takes images as input (image-only) and a model which takes images and heatmaps as input (image-and-heatmaps).

Both models act on screening mammography exams with four standard views (L-CC, R-CC, L-MLO, R-MLO). As a part of this repository, we provide 4 sample exams (in sample_data/images directory and exam list stored in sample_data/exam_list_before_cropping.pkl). Heatmap generation model and cancer classification models are implemented in PyTorch.

Update (2019/10/26): Our paper will be published in the IEEE Transactions on Medical Imaging!

Update (2019/08/26): We have added a TensorFlow implementation of our image-wise model.

Update (2019/06/21): We have included the image-wise model as described in the paper that generates predictions based on a single mammogram image. This model slightly under-performs the view-wise model used above, but can be used on single mammogram images as opposed to full exams.

Update (2019/05/15): Fixed a minor bug that caused the output DataFrame columns (left_malignant, right_benign) to be swapped. Note that this does not affect the operation of the model.

Prerequisites

License

This repository is licensed under the terms of the GNU AGPLv3 license.

How to run the code

Exam-level

Here we describe how to get predictions from view-wise model, which is our best-performing model. This model takes 4 images from each view as input and outputs predictions for each exam.

bash run.sh

will automatically run the entire pipeline and save the prediction results in csv.

We recommend running the code with a gpu (set by default). To run the code with cpu only, please change DEVICE_TYPE in run.sh to 'cpu'.

If running the individual Python scripts, please include the path to this repository in your PYTHONPATH .

You should obtain the following outputs for the sample exams provided in the repository.

Predictions using image-only model (found in sample_output/image_predictions.csv by default):

indexleft_benignright_benignleft_malignantright_malignant
00.05800.07540.00910.0179
10.06460.95360.00120.7258
20.43880.35260.23250.1061
30.37650.64830.09090.2579

Predictions using image-and-heatmaps model (found in sample_output/imageheatmap_predictions.csv by default):

indexleft_benignright_benignleft_malignantright_malignant
00.06120.05550.00990.0063
10.05070.80250.00090.9000
20.28770.22860.25240.0461
30.41810.31720.31740.0485

Single Image

Here we also upload image-wise model, which is different from and performs worse than the view-wise model described above. The csv output from view-wise model will be different from that of image-wise model in this section. Because this model has the benefit of creating predictions for each image separately, we make this model public to facilitate transfer learning.

To use the image-wise model, run a command such as the following:

bash run_single.sh "sample_data/images/0_L_CC.png" "L-CC"

where the first argument is path to a mammogram image, and the second argument is the view corresponding to that image.

You should obtain the following output based on the above example command:

Stage 1: Crop Mammograms
Stage 2: Extract Centers
Stage 3: Generate Heatmaps
Stage 4a: Run Classifier (Image)
{"benign": 0.040191903710365295, "malignant": 0.008045293390750885}
Stage 4b: Run Classifier (Image+Heatmaps)
{"benign": 0.052365876734256744, "malignant": 0.005510155577212572}

Image-level Notebook

We have included a sample notebook that contains code for running the classifiers with and without heatmaps (excludes preprocessing).

Data

To use one of the pretrained models, the input is required to consist of at least four images, at least one for each view (L-CC, L-MLO, R-CC, R-MLO).

The original 12-bit mammograms are saved as rescaled 16-bit images to preserve the granularity of the pixel intensities, while still being correctly displayed in image viewers.

sample_data/exam_list_before_cropping.pkl contains a list of exam information before preprocessing. Each exam is represented as a dictionary with the following format:

{
  'horizontal_flip': 'NO',
  'L-CC': ['0_L_CC'],
  'R-CC': ['0_R_CC'],
  'L-MLO': ['0_L_MLO'],
  'R-MLO': ['0_R_MLO'],
}

We expect images from L-CC and L-MLO views to be facing right direction, and images from R-CC and R-MLO views are facing left direction. horizontal_flip indicates whether all images in the exam are flipped horizontally from expected. Values for L-CC, R-CC, L-MLO, and R-MLO are list of image filenames without extension and directory name.

Additional information for each image gets included as a dictionary. Such dictionary has all 4 views as keys, and the values are the additional information for the corresponding key. For example, window_location, which indicates the top, bottom, left and right edges of cropping window, is a dictionary that has 4 keys and has 4 lists as values which contain the corresponding information for the images. Additionally, rightmost_pixels, bottommost_pixels, distance_from_starting_side and best_center are added after preprocessing. Description for these attributes can be found in the preprocessing section. The following is an example of exam information after cropping and extracting optimal centers:

{
  'horizontal_flip': 'NO',
  'L-CC': ['0_L_CC'],
  'R-CC': ['0_R_CC'],
  'L-MLO': ['0_L_MLO'],
  'R-MLO': ['0_R_MLO'],
  'window_location': {
    'L-CC': [(353, 4009, 0, 2440)],
    'R-CC': [(71, 3771, 952, 3328)],
    'L-MLO': [(0, 3818, 0, 2607)],
    'R-MLO': [(0, 3724, 848, 3328)]
   },
  'rightmost_points': {
    'L-CC': [((1879, 1958), 2389)],
    'R-CC': [((2207, 2287), 2326)],
    'L-MLO': [((2493, 2548), 2556)],
    'R-MLO': [((2492, 2523), 2430)]
   },
  'bottommost_points': {
    'L-CC': [(3605, (100, 100))],
    'R-CC': [(3649, (101, 106))],
    'L-MLO': [(3767, (1456, 1524))],
    'R-MLO': [(3673, (1164, 1184))]
   },
  'distance_from_starting_side': {
    'L-CC': [0],
    'R-CC': [0],
    'L-MLO': [0],
    'R-MLO': [0]
   },
  'best_center': {
    'L-CC': [(1850, 1417)],
    'R-CC': [(2173, 1354)],
    'L-MLO': [(2279, 1681)],
    'R-MLO': [(2185, 1555)]
   }
}

The labels for the included exams are as follows:

indexleft_benignright_benignleft_malignantright_malignant
00000
10001
21000
31111

Pipeline

The pipeline consists of four stages.

  1. Crop mammograms
  2. Calculate optimal centers
  3. Generate Heatmaps
  4. Run classifiers

The following variables defined in run.sh can be modified as needed:

Preprocessing

Run the following commands to crop mammograms and calculate information about augmentation windows.

Crop mammograms

python3 src/cropping/crop_mammogram.py \
    --input-data-folder $DATA_FOLDER \
    --output-data-folder $CROPPED_IMAGE_PATH \
    --exam-list-path $INITIAL_EXAM_LIST_PATH  \
    --cropped-exam-list-path $CROPPED_EXAM_LIST_PATH  \
    --num-processes $NUM_PROCESSES

src/import_data/crop_mammogram.py crops the mammogram around the breast and discards the background in order to improve image loading time and time to run segmentation algorithm and saves each cropped image to $PATH_TO_SAVE_CROPPED_IMAGES/short_file_path.png using h5py. In addition, it adds additional information for each image and creates a new image list to $CROPPED_IMAGE_LIST_PATH while discarding images which it fails to crop. Optional --verbose argument prints out information about each image. The additional information includes the following:

Calculate optimal centers

python3 src/optimal_centers/get_optimal_centers.py \
    --cropped-exam-list-path $CROPPED_EXAM_LIST_PATH \
    --data-prefix $CROPPED_IMAGE_PATH \
    --output-exam-list-path $EXAM_LIST_PATH \
    --num-processes $NUM_PROCESSES

src/optimal_centers/get_optimal_centers.py outputs new exam list with additional metadata to $EXAM_LIST_PATH. The additional information includes the following:

Heatmap Generation

python3 src/heatmaps/run_producer.py \
    --model-path $PATCH_MODEL_PATH \
    --data-path $EXAM_LIST_PATH \
    --image-path $CROPPED_IMAGE_PATH \
    --batch-size $HEATMAP_BATCH_SIZE \
    --output-heatmap-path $HEATMAPS_PATH \
    --device-type $DEVICE_TYPE \
    --gpu-number $GPU_NUMBER

src/heatmaps/run_producer.py generates heatmaps by combining predictions for patches of images and saves them as hdf5 format in $HEATMAPS_PATH using $DEVICE_TYPE device. $DEVICE_TYPE can either be 'gpu' or 'cpu'. $HEATMAP_BATCH_SIZE should be adjusted depending on available memory size. An optional argument --gpu-number can be used to specify which GPU to use.

Running the models

src/modeling/run_model.py can provide predictions using cropped images either with or without heatmaps. When using heatmaps, please use the--use-heatmaps flag and provide appropriate the --model-path and --heatmaps-path arguments. Depending on the available memory, the optional argument --batch-size can be provided. Another optional argument --gpu-number can be used to specify which GPU to use.

Run image only model

python3 src/modeling/run_model.py \
    --model-path $IMAGE_MODEL_PATH \
    --data-path $EXAM_LIST_PATH \
    --image-path $CROPPED_IMAGE_PATH \
    --output-path $IMAGE_PREDICTIONS_PATH \
    --use-augmentation \
    --num-epochs $NUM_EPOCHS \
    --device-type $DEVICE_TYPE \
    --gpu-number $GPU_NUMBER

This command makes predictions only using images for $NUM_EPOCHS epochs with random augmentation and outputs averaged predictions per exam to $IMAGE_PREDICTIONS_PATH.

Run image+heatmaps model

python3 src/modeling/run_model.py \
    --model-path $IMAGEHEATMAPS_MODEL_PATH \
    --data-path $EXAM_LIST_PATH \
    --image-path $CROPPED_IMAGE_PATH \
    --output-path $IMAGEHEATMAPS_PREDICTIONS_PATH \
    --use-heatmaps \
    --heatmaps-path $HEATMAPS_PATH \
    --use-augmentation \
    --num-epochs $NUM_EPOCHS \
    --device-type $DEVICE_TYPE \
    --gpu-number $GPU_NUMBER

This command makes predictions using images and heatmaps for $NUM_EPOCHS epochs with random augmentation and outputs averaged predictions per exam to $IMAGEHEATMAPS_PREDICTIONS_PATH.

Getting image from dicom files and saving as 16-bit png files

Dicom files can be converted into png files with the following function, which then can be used by the code in our repository (pypng 0.0.19 and pydicom 1.2.2 libraries are required).

import png
import pydicom

def save_dicom_image_as_png(dicom_filename, png_filename, bitdepth=12):
    """
    Save 12-bit mammogram from dicom as rescaled 16-bit png file.
    :param dicom_filename: path to input dicom file.
    :param png_filename: path to output png file.
    :param bitdepth: bit depth of the input image. Set it to 12 for 12-bit mammograms.
    """
    image = pydicom.read_file(dicom_filename).pixel_array
    with open(png_filename, 'wb') as f:
        writer = png.Writer(height=image.shape[0], width=image.shape[1], bitdepth=bitdepth, greyscale=True)
        writer.write(f, image.tolist())

Reference

If you found this code useful, please cite our paper:

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening
Nan Wu, Jason Phang, Jungkyu Park, Yiqiu Shen, Zhe Huang, Masha Zorin, Stanisław Jastrzębski, Thibault Févry, Joe Katsnelson, Eric Kim, Stacey Wolfson, Ujas Parikh, Sushma Gaddam, Leng Leng Young Lin, Kara Ho, Joshua D. Weinstein, Beatriu Reig, Yiming Gao, Hildegard Toth, Kristine Pysarenko, Alana Lewin, Jiyon Lee, Krystal Airola, Eralda Mema, Stephanie Chung, Esther Hwang, Naziya Samreen, S. Gene Kim, Laura Heacock, Linda Moy, Kyunghyun Cho, Krzysztof J. Geras
IEEE Transactions on Medical Imaging
2019

@article{wu2019breastcancer, 
    title = {Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening},
    author = {Nan Wu and Jason Phang and Jungkyu Park and Yiqiu Shen and Zhe Huang and Masha Zorin and Stanis\l{}aw Jastrz\k{e}bski and Thibault F\'{e}vry and Joe Katsnelson and Eric Kim and Stacey Wolfson and Ujas Parikh and Sushma Gaddam and Leng Leng Young Lin and Kara Ho and Joshua D. Weinstein and Beatriu Reig and Yiming Gao and Hildegard Toth and Kristine Pysarenko and Alana Lewin and Jiyon Lee and Krystal Airola and Eralda Mema and Stephanie Chung and Esther Hwang and Naziya Samreen and S. Gene Kim and Laura Heacock and Linda Moy and Kyunghyun Cho and Krzysztof J. Geras}, 
    journal = {IEEE Transactions on Medical Imaging},
    year = {2019}
}