Home

Awesome

PercepTreeV1

Official code repository for the papers:

<div align="left"> <img width="100%" alt="DINO illustration" src=".github/figure6.png"> </div> <div align="left"> <img width="100%" alt="DINO illustration" src=".github/detection_synth.jpg"> </div> <!-- The version 1 of this project is done using synthetic forest dataset `SynthTree43k`, but soon we will release models fine-tuned on real-wolrd images. Plans to release SynthTree43k are underway. The gif below shows how well the models trained on SynthTree43k transfer to real-world, without any fine-tuning on real-world images. --> <!-- <div align="center"> <img width="100%" alt="DINO illustration" src=".github/pred_synth_to_real.gif"> </div> -->

Datasets

All our datasets are made available to increase the adoption of deep learning for many precision forestry problems.

<table> <tr> <th>Dataset name</th> <th>Description</th> <th>Download</th> </tr> <tr> <td>SynthTree43k</td> <td>A dataset containing 43 000 synthetic images and over 190 000 annotated trees. Includes images, train, test, and validation splits. (84.6 GB) <a href="https://drive.google.com/drive/folders/1sdJtmQ4H8aHzYZ9TWz8xpm06R9mQMd34?usp=sharing">annos</a> </td> <td><a href="http://norlab.s3.valeria.science/SynthTree43k.zip?AWSAccessKeyId=VCI7FLOHYPGLOOOAH0S5&Expires=2274019241&Signature=KfOgwrHX8WHejopspqQ8XMwlMJE%3D">S3 storage</a></td> <tr> <tr> <td>SynthTree43k</td> <td>Depth images.</td> <td><a href="https://ulavaldti-my.sharepoint.com/:u:/g/personal/vigro7_ulaval_ca/EfglPMp555FGvwKGDEp9eRwBn_jXK-7vMPfYxDAVHbzTgg?e=l9HFd4">OneDrive </a></td> <tr> <tr> <td>CanaTree100</td> <td>A dataset containing 100 real images and over 920 annotated trees collected in Canadian forests. Includes images, train, test, and validation splits for all five folds.</td> <td><a href="http://norlab.s3.valeria.science/neats/CanaTree100.zip?AWSAccessKeyId=VCI7FLOHYPGLOOOAH0S5&Expires=2339251391&Signature=6beuqoLRQfCTaSpoC7ZKELhJwhY%3D">S3 storage </a></td> <tr> </table>

The annotations files are already included in the download link, but some users requested the annotations for entire trees: <a href="https://drive.google.com/file/d/1AZUtdrNJGPWgqEwUrRin6OKwE_KGavZq/view?usp=sharing">train_RGB_entire_tree.json</a>, <a href="https://drive.google.com/file/d/1doTRoLvQ1pGaNb75mx-SOr5aEVBLNnZe/view?usp=sharing">val_RGB_entire_tree.json</a>, <a href="https://drive.google.com/file/d/1ZMYqFylSrx2KDHR-2TSoXFq-_uoyb6Qp/view?usp=share_link">test_RGB_entire_tree.json</a>. Beware that it can result in worse detection performance (in my experience), but maybe there is something to do with models not based on RPN (square ROIs), such as <a href="https://github.com/facebookresearch/Mask2Former">Mask2Former</a>.

Pre-trained models

Pre-trained models weights are compatible with Detectron2 config files. All models are trained on our synthetic dataset SynthTree43k. We provide a demo file to try it out.

Mask R-CNN trained on synthetic images (SynthTree43k)

<table> <tr> <th>Backbone</th> <th>Modality</th> <th>box AP50</th> <th>mask AP50</th> <th colspan="6">Download</th> </tr> <tr> <td>R-50-FPN</td> <td>RGB</td> <td>87.74</td> <td>69.36</td> <td><a href="https://drive.google.com/file/d/1pnJZ3Vc0SVTn_J8l_pwR4w1LMYnFHzhV/view?usp=sharing">model</a></td> <tr> <td>R-101-FPN</td> <td>RGB</td> <td>88.51</td> <td>70.53</td> <td><a href="https://drive.google.com/file/d/1ApKm914PuKm24kPl0sP7-XgG_Ottx5tJ/view?usp=sharing">model</a></td> <tr> <td>X-101-FPN</td> <td>RGB</td> <td>88.91</td> <td>71.07</td> <td><a href="https://drive.google.com/file/d/1Q5KV5beWVZXK_vlIED1jgpf4XJgN71ky/view?usp=sharing">model</a></td> </tr> <tr> <td>R-50-FPN</td> <td>Depth</td> <td>89.67</td> <td>70.66</td> <td><a href="https://drive.google.com/file/d/1bnH7ZSXWoOJx5AkbNeHf_McV46qiKIkY/view?usp=sharing">model</a></td> <tr> <td>R-101-FPN</td> <td>Depth</td> <td>89.89</td> <td>71.65</td> <td><a href="https://drive.google.com/file/d/1DgMscnTIGty7y9-VNcq1zERrevfT3b_L/view?usp=sharing">model</a></td> <tr> <td>X-101-FPN</td> <td>Depth</td> <td>87.41</td> <td>68.19</td> <td><a href="https://drive.google.com/file/d/1rsCbLSvFf2I47FJK4vhhv0du5uCV6zjO/view?usp=sharing">model</a></td> </tr> </table>

Mask R-CNN finetuned on real images (CanaTree100)

<table> <tr> <th>Backbone</th> <th>Description</th> <th colspan="6">Download</th> </tr> <tr> <td>X-101-FPN</td> <td>Trained on fold 01, good for inference.</td> <td><a href="https://drive.google.com/file/d/108tORWyD2BFFfO5kYim9jP0wIVNcw0OJ/view?usp=sharing">model</a></td> </tr> </table>

Demos

Once you have a working Detectron2 and OpenCV installation, running the demo is easy.

Demo on a single image

Demo on video

<div align="left"> <img width="70%" alt="DINO illustration" src=".github/trailer_0.gif"> </div>

Bibtex

If you find our work helpful for your research, please consider citing the following BibTeX entry.

@article{grondin2022tree,
    author = {Grondin, Vincent and Fortin, Jean-Michel and Pomerleau, François and Giguère, Philippe},
    title = {Tree detection and diameter estimation based on deep learning},
    journal = {Forestry: An International Journal of Forest Research},
    year = {2022},
    month = {10},
}

@inproceedings{grondin2022training,
  title={Training Deep Learning Algorithms on Synthetic Forest Images for Tree Detection},
  author={Grondin, Vincent and Pomerleau, Fran{\c{c}}ois and Gigu{\`e}re, Philippe},
  booktitle={ICRA 2022 Workshop in Innovation in Forestry Robotics: Research and Industry Adoption},
  year={2022}
}