Awesome
bigquery-kafka-connect
Kafka Connect connector for Google BigQuery
Use API
npm install --save bigquery-kafka-connect
bigquery -> kafka
const { runSourceConnector } = require("bigquery-kafka-connect");
runSourceConnector(config, [], onError).then(config => {
//runs forever until: config.stop();
});
kafka -> bigquery
const { runSinkConnector } = require("bigquery-kafka-connect");
runSinkConnector(config, [], onError).then(config => {
//runs forever until: config.stop();
});
kafka -> bigquery (with custom topic (no source-task topic))
const { runSinkConnector, ConverterFactory } = require("bigquery-kafka-connect");
const bigQueryTableDescription = {
"schema": {
"fields": [
{ name: "id", type: "INTEGER", mode: "REQUIRED" },
{ name: "name", type: "STRING", mode: "REQUIRED" },
{ name: "info", type: "STRING", mode: "NULLABLE" }
]
},
"timePartitioning": {"type": "DAY"}
};
const etlFunc = (messageValue, callback) => {
//type is an example json format field
if (messageValue.type === "publish") {
return callback(null, {
id: messageValue.payload.id,
name: messageValue.payload.name,
info: messageValue.payload.info
});
}
if (messageValue.type === "unpublish") {
return callback(null, null); //null value will cause deletion
}
callback(new Error("unknown messageValue.type"));
};
const converter = ConverterFactory.createSinkSchemaConverter(bigQueryTableDescription, etlFunc);
runSinkConnector(config, [converter], onError).then(config => {
//runs forever until: config.stop();
});
/*
this example would be able to store kafka message values
that look like this (so completely unrelated to messages created by a default SourceTask)
{
payload: {
id: 1,
name: "first item",
info: "some info"
},
type: "publish"
}
*/
Use CLI
note: in BETA :seedling:
npm install -g bigquery-kafka-connect
# run source etl: bigquery -> kafka
nkc-bigquery-source --help
# run sink etl: kafka -> bigquery
nkc-bigquery-sink --help
Config(uration)
const config = {
kafka: {
kafkaHost: "localhost:9092",
logger: null,
groupId: "kc-bigquery-test",
clientName: "kc-bigquery-test-name",
workerPerPartition: 1,
options: {
sessionTimeout: 8000,
protocol: ["roundrobin"],
fromOffset: "earliest", //latest
fetchMaxBytes: 1024 * 100,
fetchMinBytes: 1,
fetchMaxWaitMs: 10,
heartbeatInterval: 250,
retryMinTimeout: 250,
requireAcks: 1,
//ackTimeoutMs: 100,
//partitionerType: 3
}
},
topic: "sc_test_topic",
partitions: 1,
maxTasks: 1,
pollInterval: 2000,
produceKeyed: true,
produceCompressionType: 0,
connector: {
batchSize: 500,
maxPollCount: 500,
projectId: "bq-project-id",
dataset: "bq_dataset",
table: "bq_table",
idColumn: "id"
},
http: {
port: 3149,
middlewares: []
},
enableMetrics: true,
batch: {
batchSize: 100,
commitEveryNBatch: 1,
concurrency: 1,
commitSync: true
}
};
Native Client Config(uration)
const config = {
kafka: {
noptions: {
"metadata.broker.list": "localhost:9092",
"group.id": "kc-bigquery-test",
"enable.auto.commit": false,
"debug": "all",
"event_cb": true,
"client.id": "kc-bigquery-test-name"
},
tconf: {
"auto.offset.reset": "earliest",
"request.required.acks": 1
}
},
topic: "sc_test_topic",
partitions: 1,
maxTasks: 1,
pollInterval: 2000,
produceKeyed: true,
produceCompressionType: 0,
connector: {
batchSize: 500,
maxPollCount: 500,
projectId: "bq-project-id",
dataset: "bq_dataset",
table: "bq_table",
idColumn: "id"
},
http: {
port: 3149,
middlewares: []
},
enableMetrics: true
};