Awesome
Improving Camouflaged Object Detection with the Uncertainty of Pseudo-edge Labels (UR-COD)
This is the official implementation of the paper in ACM Multimedia Asia 2021. We provide the sample codes for training and testing and pretrained models on camouflaged object detection.
<p align="left"> <img src="figure/proposed_method.png" alt="architecture" width="875px"> </p>Requirements
- Python 3.7+
- torch 1.10+
- opencv-python
- numpy
- tqdm
Installation
- Clone the repository.
git clone git@github.com:nobukatsu-kajiura/UR-COD.git
-
Download dataset from here. Put
TrainDataset
andTestDataset
directory in$ROOT/data/
. -
If you want to try the framework, download the pretrained model from here and put
Model_100_gen.pth
in$ROOT/checkpoints/UR-SINetv2-pretrained/
.
Training and testing
- Train the framework.
python train.py --name UR-SINetv2 --dataset SINetv2 --epoch 100
- Test the framework.
When using the pretrained model, use
--name UR-SINetv2-pretrained
.
python test.py --name UR-SINetv2 --dataset SINetv2 --epoch 100
References
We used the publicly avaliable model of SINet-v2[Fan+, TPAMI2021] as Pseudo-Map Generator. We obtained the weights from here and generated pseudo-map labels.
Citation
If you find our research useful in your research, please consider citing:
@inproceedings{kajiura2021improving,
title={Improving Camouflaged Object Detection with the Uncertainty of Pseudo-edge Labels},
author={Kajiura, Nobukatsu and Liu, Hong and Satoh, Shin'ichi},
booktitle = {ACM Multimedia Asia},
year = {2021}
}