Home

Awesome

SMAC: Learning Selective Mutual Attention and Contrast for RGB-D Saliency Detection

arXiv version: https://arxiv.org/abs/2010.05537

Citing our work

If you think our work is helpful, please cite

@article{liu2021learning,
  title={Learning Selective Mutual Attention and Contrast for RGB-D Saliency Detection},
  author={Liu, Nian and Zhang, Ni and Shao, Ling and Han, Junwei},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021}
}

The Proposed RGB-D Salient Object Detection Dataset

ReDWeb-S

We construct a new large-scale challenging dataset ReDWeb-S and it has totally 3179 images with various real-world scenes and high-quality depth maps. We split the dataset into a training set with 2179 RGB-D image pairs and a testing set with the remaining 1000 image pairs.

avatar

The proposed dataset link can be found here. [baidu pan fetch code: rp8b | Google drive]

Dataset Statistics and Comparisons

We analyze the proposed ReDWeb-S datset from several statistical aspects and also conduct a comparison between ReDWeb-S and other existing RGB-D SOD datasets.

avatar

avatar Fig.1. Top 60% scene and object category distributions of our proposed ReDWeb-S dataset.

avatar Fig.2. Comparison of nine RGB-D SOD dataset in terms of the distributions of global contrast and interior contrast.

avatar Fig.3. Comparsion of the average annotation maps for nine RGB-D SOD benchmark datasets.

avatar

Fig.4. Comparsion of the distribution of object size for nine RGB-D SOD benchmark datasets.

SOTA Results on Our Proposed Dataset

We provide other SOTA RGB-D methods' results and scores on our proposed dataset. You can directly download all results [here ov08].

No.Pub.NameTitleDownload
00TIP2023CaverCaver: Cross-modal view-mixed transformer for bi-modal salient object detectionresults, 2kfm
01TCSVT2022HRTransNetHRTransNet: HRFormer-Driven Two-Modality Salient Object Detectionresults, azjb
02TCSVT2021SwinNetSwinNet: Swin Transformer Drives Edge-Aware RGB-D and RGB-T Salient Object Detectionresults, zf9s
03ICCV2021CMINetRGB-D Saliency Detection via Cascaded Mutual Information Minimizationresults, maav
04ICCV2021VSTVisual Saliency Transformerresults, rkq9
05ICCV2021SPNetSpecificity-preserving RGB-D Saliency Detectionresults, wwup
06CVPR2021DCFCalibrated RGB-D Salient Object Detectionresults, 3kn9
07ECCV2020PGARProgressively Guided Alternate Refinement Network for RGB-D Salient Object Detectionresults, mwtr
08ECCV2020HDFNetHierarchical Dynamic Filtering Network for RGB-D Salient Object Detectionresults, b98z
09ECCV2020DANetA Single Stream Network for Robust and Real-time RGB-D Salient Object Detectionresults, 1luj
10ECCV2020CoNetAccurate RGB-D Salient Object Detection via Collaborative Learningresults, bqq6
11ECCV2020CMWNetCross-Modal Weighting Network for RGB-D Salient Object Detectionresults, ztv9
12ECCV2020cmMSRGB-D Salient Object Detection with Cross-Modality Modulation and Selectionresults, kwe5
13ECCV2020BBS-NetBBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Networkresults, ya5v
14ECCV2020ATSAAsymmetric Two-Stream Architecture for Accurate RGB-D Saliency Detectionresults, k750
15CVPR2020S2MALearning Selective Self-Mutual Attention for RGB-D Saliency Detectionresults, g0pgx
16CVPR2020JL-DCFJL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detectionresults, xh9p
17CVPR2020UCNetUC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencodersresults, 6o93
18CVPR2020A2deleA2dele: Adaptive and Attentive Depth Distiller for Efficient RGB-D Salient Object Detectionresults, swv5
19CVPR2020SSF-RGBDSelect, Supplement and Focus for RGB-D Saliency Detectionresults, oshl
20TIP2020DisenFusionRGBD Salient Object Detection via Disentangled Cross-Modal Fusionresults, h3hc
21TNNLS2020D3NetD3Net:Rethinking RGB-D Salient Object Detection: Models, Datasets, and Large-Scale Benchmarksresults, tetn
22ICCV2019DMRADepth-induced multi-scale recurrent attention network for saliency detectionresults, kqq4
23CVPR2019CPFPContrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detectionresults, 0v2c
24TIP2019TANetThree-stream attention-aware network for RGB-D salient object detectionresults, hsy9
25CVPR2018PCFProgressively Complementarity-Aware Fusion Network for RGB-D Salient Object Detectionresults, qzhm
26PR2019MMCIMulti-modal fusion network with multiscale multi-path and cross-modal interactions for RGB-D salient object detectionresults, c90m
27TCyb2017CTMFCNNs-based RGB-D saliency detection via cross-view transfer and multiview fusionresults, i0zb
28Access2019AFNetAdaptive fusion for rgb-d salient object detectionresults, 54zc
29TIP2017DFRgbd salient object detection via deep fusionresults, d7sc
30ICME2016SESalient object detection for rgb-d image via saliency evolutionresults, h10s
31SPL2016DCMCSaliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusionresults, 18po
32CVPR2016LBELocal background enclosure for rgb-d salient object detectionresults, iiz5
MethodsS-measuremaxFE-measureMAE
S2MA0.7110.6960.7810.139
JL-DCF0.7340.7270.8050.128
UCNet0.7130.710.7940.13
A2dele0.6410.6030.6720.16
SSF-RGBD0.5950.5580.710.189
DisenFusion0.6750.6580.760.16
D3Net0.6890.6730.7680.149
DMRA0.5920.5790.7210.188
CPFP0.6850.6450.7440.142
TANet0.6560.6230.7410.165
PCF0.6550.6270.7430.166
MMCI0.6600.6410.7540.176
CTMF0.6410.6070.7390.204
AFNet0.5460.5490.6930.213
DF0.5950.5790.6830.233
SE0.4350.3930.5870.283
DCMC0.4270.3480.5490.313
LBE0.6370.6290.730.253

Acknowledgement

We thank all annotators for helping us constructing the proposed dataset. Our proposed dataset is based on the ReDWeb dataset, which is a state-of-the-art dataset proposed for monocular image depth estimation. We also thank the authors for providing the ReDWeb dataset.

Contact

If you have any questions, please feel free to contact me. (nnizhang.1995@gmail.com)