Awesome
<div align="center"> <img height="15px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <div><b>compromise</b></div> <img src="https://user-images.githubusercontent.com/399657/68222691-6597f180-ffb9-11e9-8a32-a7f38aa8bded.png"/> <div>modest natural language processing</div> <div><code>npm install compromise</code></div> <div align="center"> <sub> by <a href="https://spencermounta.in/">Spencer Kelly</a> and <a href="https://github.com/spencermountain/compromise/graphs/contributors"> many contributors </a> </sub> </div> <img height="22px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> </div> <div align="center"> <div> <a href="https://npmjs.org/package/compromise"> <img src="https://img.shields.io/npm/v/compromise.svg?style=flat-square" /> </a> <a href="https://codecov.io/gh/spencermountain/compromise"> <img src="https://codecov.io/gh/spencermountain/compromise/branch/master/graph/badge.svg" /> </a> <a href="https://bundlephobia.com/result?p=compromise"> <img src="https://img.shields.io/bundlephobia/min/compromise"/> <!-- <img src="https://badge-size.herokuapp.com/spencermountain/compromise/master/builds/compromise.min.js" /> --> </a> </div> <div align="center"> <sub> <a href="https://github.com/nlp-compromise/fr-compromise">french</a> • <a href="https://github.com/nlp-compromise/de-compromise">german</a> • <a href="https://github.com/nlp-compromise/it-compromise">italian</a> • <a href="https://github.com/nlp-compromise/es-compromise">spanish</a> </sub> </div> </div> <!-- spacer --> <img height="25px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <div align="left"> don't you find it strange, <br/> <ul> <img height="2px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <sub>how easy <b>text</b> is to <b>make</b>,</sub> <br/> <img height="2px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/><i>↬<sub>ᔐᖜ</sub><b>↬</b></i> <sub></sub> and how hard it is to actually <b>parse</b> and <i>use</i>?
</ul> </div> <!-- spacer --> <img height="45px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <div align="left"> <img height="10px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>compromise <i><a href="https://observablehq.com/@spencermountain/compromise-justification">tries its best</a></i> to turn text into data. <br/> <img height="30px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>it makes limited and sensible decisions. <br/> <sub > <img height="15px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> it's not as smart as you'd think. </sub> <img height="45px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <!-- it is <a href="https://docs.compromise.cool/compromise-filesize">small, <a href="https://docs.compromise.cool/compromise-performance">quick</a>, and often <i><a href="https://docs.compromise.cool/compromise-accuracy">good-enough</a></i>. <br/> --> </div> <img height="30px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>import nlp from 'compromise'
let doc = nlp('she sells seashells by the seashore.')
doc.verbs().toPastTense()
doc.text()
// 'she sold seashells by the seashore.'
<!-- spacer -->
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
<div align="left">
<i>don't be fancy, at all:</i>
</div>
if (doc.has('simon says #Verb')) {
return true
}
<!-- spacer -->
<img height="30px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
<div align="center">
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221814-05ed1680-ffb8-11e9-8b6b-c7528d163871.png"/>
</div>
<div align="left">
<i>grab parts of the text:</i>
</div>
let doc = nlp(entireNovel)
doc.match('the #Adjective of times').text()
// "the blurst of times?"
<div align="right">
<a href="https://docs.compromise.cool/compromise-match">match docs</a>
</div>
<div align="center">
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221837-0d142480-ffb8-11e9-9d30-90669f1b897c.png"/>
</div>
<!-- spacer -->
<img height="30px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
<i>and get data:</i>
import plg from 'compromise-speech'
nlp.extend(plg)
let doc = nlp('Milwaukee has certainly had its share of visitors..')
doc.compute('syllables')
doc.places().json()
/*
[{
"text": "Milwaukee",
"terms": [{
"normal": "milwaukee",
"syllables": ["mil", "wau", "kee"]
}]
}]
*/
<div align="right">
<a href="https://docs.compromise.cool/compromise-json">json docs</a>
</div>
<div align="center">
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221814-05ed1680-ffb8-11e9-8b6b-c7528d163871.png"/>
</div>
<!-- spacer -->
<img height="30px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
avoid the problems of brittle parsers:
let doc = nlp("we're not gonna take it..")
doc.has('gonna') // true
doc.has('going to') // true (implicit)
// transform
doc.contractions().expand()
doc.text()
// 'we are not going to take it..'
<div align="right">
<a href="https://docs.compromise.cool/compromise-contractions">contraction docs</a>
</div>
<div align="center">
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221814-05ed1680-ffb8-11e9-8b6b-c7528d163871.png"/>
</div>
<!-- spacer -->
<img height="30" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
and whip stuff around like it's data:
let doc = nlp('ninety five thousand and fifty two')
doc.numbers().add(20)
doc.text()
// 'ninety five thousand and seventy two'
<div align="right">
<a href="https://docs.compromise.cool/compromise-values">number docs</a>
</div>
<div align="center">
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221837-0d142480-ffb8-11e9-9d30-90669f1b897c.png"/>
</div>
<!-- spacer -->
<img height="30" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
<sub>-because it actually is-</sub>
let doc = nlp('the purple dinosaur')
doc.nouns().toPlural()
doc.text()
// 'the purple dinosaurs'
<div align="right">
<a href="https://docs.compromise.cool/nouns">noun docs</a>
</div>
<div align="center">
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221731-e8b84800-ffb7-11e9-8453-6395e0e903fa.png"/>
</div>
<!-- spacer -->
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
Use it on the client-side:
<script src="https://unpkg.com/compromise"></script>
<script>
var doc = nlp('two bottles of beer')
doc.numbers().minus(1)
document.body.innerHTML = doc.text()
// 'one bottle of beer'
</script>
or likewise:
import nlp from 'compromise'
var doc = nlp('London is calling')
doc.verbs().toNegative()
// 'London is not calling'
<img height="75px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
<!--
bragging graphs
-->
<!-- spacer -->
<img height="30" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
compromise is ~250kb (minified):
<div align="center"> <!-- filesize --> <a href="https://bundlephobia.com/result?p=compromise"> <img width="600" src="https://user-images.githubusercontent.com/399657/68234819-14dfc300-ffd0-11e9-8b30-cb8545707b29.png"/> </a> </div>it's pretty fast. It can run on keypress:
<div align="center"> <a href="https://observablehq.com/@spencermountain/compromise-performance"> <img width="600" src="https://user-images.githubusercontent.com/399657/159795115-ed62440a-be41-424c-baa4-8dd15c48377d.png"/> </a> </div>it works mainly by <a href="https://observablehq.com/@spencermountain/verbs">conjugating all forms</a> of a basic word list.
The final lexicon is <a href="https://observablehq.com/@spencermountain/compromise-lexicon">~14,000 words</a>:
<div align="center"> <img width="600" src="https://user-images.githubusercontent.com/399657/68234805-0d201e80-ffd0-11e9-8dc6-f7a600352555.png"/> </div>you can read more about how it works, here. it's weird.
<!-- spacer --> <img height="75px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <!-- one/two/three parts --> <p align="left"> <sub>okay -</sub> <h1> <code>compromise/one</code> </h1> <p align="center">A <code>tokenizer</code> of words, sentences, and punctuation.</p> <img height="15px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <p>import nlp from 'compromise/one'
let doc = nlp("Wayne's World, party time")
let data = doc.json()
/* [{
normal:"wayne's world party time",
terms:[{ text: "Wayne's", normal: "wayne" },
...
]
}]
*/
<div align="right">
<a href="https://docs.compromise.cool/compromise-tokenization">tokenizer docs</a>
</div>
<b>compromise/one</b> splits your text up, wraps it in a handy API,
<ul> <sub>and does nothing else -</sub> </ul> <img height="25px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/><b>/one</b> is quick - most sentences take a 10th of a millisecond.
It can do <b>~1mb</b> of text a second - or 10 wikipedia pages.
<i>Infinite jest</i> takes 3s.
<div align="right"> You can also parallelize, or stream text to it with <a href="https://github.com/spencermountain/compromise/tree/master/plugins/speed">compromise-speed</a>. </div> <!-- spacer --> <img height="60px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <!-- two --> <p align="center"> <h1 align="left"> <code>compromise/two</code> </h1> <p align="center">A <code>part-of-speech</code> tagger, and grammar-interpreter.</p> <img height="15px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <p>import nlp from 'compromise/two'
let doc = nlp("Wayne's World, party time")
let str = doc.match('#Possessive #Noun').text()
// "Wayne's World"
<div align="right">
<a href="https://docs.compromise.cool/compromise-tagger">tagger docs</a>
</div>
<p>
<img height="25px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
</p>
<b>compromise/two</b> automatically calculates the very basic grammar of each word.
<sub>this is more useful than people sometimes realize.</sub>
Light grammar helps you write cleaner templates, and get closer to the information.
<!-- Part-of-speech tagging is profoundly-difficult task to get 100% on. It is also a profoundly easy task to get 85% on. --> <img height="50px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>compromise has <b>83 tags</b>, arranged in <a href="https://observablehq.com/@spencermountain/compromise-tags">a handsome graph</a>.
<b>#FirstName</b> → <b>#Person</b> → <b>#ProperNoun</b> → <b>#Noun</b>
you can see the grammar of each word by running doc.debug()
you can see the reasoning for each tag with nlp.verbose('tagger')
.
if you prefer <a href="https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html"><i>Penn tags</i></a>, you can derive them with:
let doc = nlp('welcome thrillho')
doc.compute('penn')
doc.json()
<img height="60px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
<!-- three -->
<p align="center">
<h1 align="left">
<code>compromise/three</code>
</h1>
<p align="center"><code>Phrase</code> and sentence tooling.</p>
<img height="15px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
<p>
import nlp from 'compromise/three'
let doc = nlp("Wayne's World, party time")
let str = doc.people().normalize().text()
// "wayne"
<div align="right">
<a href="https://docs.compromise.cool/compromise-selections">selection docs</a>
</div>
<b>compromise/three</b> is a set of tooling to <i>zoom into</i> and operate on parts of a text.
.numbers()
grabs all the numbers in a document, for example - and extends it with new methods, like .subtract()
.
When you have a phrase, or group of words, you can see additional metadata about it with .json()
let doc = nlp('four out of five dentists')
console.log(doc.fractions().json())
/*[{
text: 'four out of five',
terms: [ [Object], [Object], [Object], [Object] ],
fraction: { numerator: 4, denominator: 5, decimal: 0.8 }
}
]*/
let doc = nlp('$4.09CAD')
doc.money().json()
/*[{
text: '$4.09CAD',
terms: [ [Object] ],
number: { prefix: '$', num: 4.09, suffix: 'cad'}
}
]*/
<img height="80px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
API
Compromise/one
Output
- .text() - return the document as text
- .json() - return the document as data
- .debug() - pretty-print the interpreted document
- .out() - a named or custom output
- .html({}) - output custom html tags for matches
- .wrap({}) - produce custom output for document matches
Utils
- .found [getter] - is this document empty?
- .docs [getter] get term objects as json
- .length [getter] - count the # of characters in the document (string length)
- .isView [getter] - identify a compromise object
- .compute() - run a named analysis on the document
- .clone() - deep-copy the document, so that no references remain
- .termList() - return a flat list of all Term objects in match
- .cache({}) - freeze the current state of the document, for speed-purposes
- .uncache() - un-freezes the current state of the document, so it may be transformed
- .freeze({}) - prevent any tags from being removed, in these terms
- .unfreeze({}) - allow tags to change again, as default
Accessors
- .all() - return the whole original document ('zoom out')
- .terms() - split-up results by each individual term
- .first(n) - use only the first result(s)
- .last(n) - use only the last result(s)
- .slice(n,n) - grab a subset of the results
- .eq(n) - use only the nth result
- .firstTerms() - get the first word in each match
- .lastTerms() - get the end word in each match
- .fullSentences() - get the whole sentence for each match
- .groups() - grab any named capture-groups from a match
- .wordCount() - count the # of terms in the document
- .confidence() - an average score for pos tag interpretations
Match
(match methods use the match-syntax.)
- .match('') - return a new Doc, with this one as a parent
- .not('') - return all results except for this
- .matchOne('') - return only the first match
- .if('') - return each current phrase, only if it contains this match ('only')
- .ifNo('') - Filter-out any current phrases that have this match ('notIf')
- .has('') - Return a boolean if this match exists
- .before('') - return all terms before a match, in each phrase
- .after('') - return all terms after a match, in each phrase
- .union() - return combined matches without duplicates
- .intersection() - return only duplicate matches
- .complement() - get everything not in another match
- .settle() - remove overlaps from matches
- .growRight('') - add any matching terms immediately after each match
- .growLeft('') - add any matching terms immediately before each match
- .grow('') - add any matching terms before or after each match
- .sweep(net) - apply a series of match objects to the document
- .splitOn('') - return a Document with three parts for every match ('splitOn')
- .splitBefore('') - partition a phrase before each matching segment
- .splitAfter('') - partition a phrase after each matching segment
- .join() - merge any neighbouring terms in each match
- .joinIf(leftMatch, rightMatch) - merge any neighbouring terms under given conditions
- .lookup([]) - quick find for an array of string matches
- .autoFill() - create type-ahead assumptions on the document
Tag
- .tag('') - Give all terms the given tag
- .tagSafe('') - Only apply tag to terms if it is consistent with current tags
- .unTag('') - Remove this term from the given terms
- .canBe('') - return only the terms that can be this tag
Case
- .toLowerCase() - turn every letter of every term to lower-cse
- .toUpperCase() - turn every letter of every term to upper case
- .toTitleCase() - upper-case the first letter of each term
- .toCamelCase() - remove whitespace and title-case each term
Whitespace
- .pre('') - add this punctuation or whitespace before each match
- .post('') - add this punctuation or whitespace after each match
- .trim() - remove start and end whitespace
- .hyphenate() - connect words with hyphen, and remove whitespace
- .dehyphenate() - remove hyphens between words, and set whitespace
- .toQuotations() - add quotation marks around these matches
- .toParentheses() - add brackets around these matches
Loops
- .map(fn) - run each phrase through a function, and create a new document
- .forEach(fn) - run a function on each phrase, as an individual document
- .filter(fn) - return only the phrases that return true
- .find(fn) - return a document with only the first phrase that matches
- .some(fn) - return true or false if there is one matching phrase
- .random(fn) - sample a subset of the results
Insert
- .replace(match, replace) - search and replace match with new content
- .replaceWith(replace) - substitute-in new text
- .remove() - fully remove these terms from the document
- .insertBefore(str) - add these new terms to the front of each match (prepend)
- .insertAfter(str) - add these new terms to the end of each match (append)
- .concat() - add these new things to the end
- .swap(fromLemma, toLemma) - smart replace of root-words,using proper conjugation
Transform
- .sort('method') - re-arrange the order of the matches (in place)
- .reverse() - reverse the order of the matches, but not the words
- .normalize({}) - clean-up the text in various ways
- .unique() - remove any duplicate matches
Lib
(these methods are on the main nlp
object)
-
nlp.tokenize(str) - parse text without running POS-tagging
-
nlp.lazy(str, match) - scan through a text with minimal analysis
-
nlp.plugin({}) - mix in a compromise-plugin
-
nlp.parseMatch(str) - pre-parse any match statements into json
-
nlp.world() - grab or change library internals
-
nlp.model() - grab all current linguistic data
-
nlp.methods() - grab or change internal methods
-
nlp.hooks() - see which compute methods run automatically
-
nlp.verbose(mode) - log our decision-making for debugging
-
nlp.version - current semver version of the library
-
nlp.addWords(obj, isFrozen?) - add new words to the lexicon
-
nlp.addTags(obj) - add new tags to the tagSet
-
nlp.typeahead(arr) - add words to the auto-fill dictionary
-
nlp.buildTrie(arr) - compile a list of words into a fast lookup form
-
nlp.buildNet(arr) - compile a list of matches into a fast match form
compromise/two:
Contractions
- .contractions() - things like "didn't"
- .contractions().expand() - things like "didn't"
- .contract() - things like "didn't"
compromise/three:
Nouns
- .nouns() - return any subsequent terms tagged as a Noun
- .nouns().json() - overloaded output with noun metadata
- .nouns().parse() - get tokenized noun-phrase
- .nouns().isPlural() - return only plural nouns
- .nouns().isSingular() - return only singular nouns
- .nouns().toPlural() -
'football captain' → 'football captains'
- .nouns().toSingular() -
'turnovers' → 'turnover'
- .nouns().adjectives() - get any adjectives describing this noun
Verbs
- .verbs() - return any subsequent terms tagged as a Verb
- .verbs().json() - overloaded output with verb metadata
- .verbs().parse() - get tokenized verb-phrase
- .verbs().subjects() - what is doing the verb action
- .verbs().adverbs() - return the adverbs describing this verb.
- .verbs().isSingular() - return singular verbs like 'spencer walks'
- .verbs().isPlural() - return plural verbs like 'we walk'
- .verbs().isImperative() - only instruction verbs like 'eat it!'
- .verbs().toPastTense() -
'will go' → 'went'
- .verbs().toPresentTense() -
'walked' → 'walks'
- .verbs().toFutureTense() -
'walked' → 'will walk'
- .verbs().toInfinitive() -
'walks' → 'walk'
- .verbs().toGerund() -
'walks' → 'walking'
- .verbs().toPastParticiple() -
'drive' → 'had driven'
- .verbs().conjugate() - return all conjugations of these verbs
- .verbs().isNegative() - return verbs with 'not', 'never' or 'no'
- .verbs().isPositive() - only verbs without 'not', 'never' or 'no'
- .verbs().toNegative() -
'went' → 'did not go'
- .verbs().toPositive() -
"didn't study" → 'studied'
Numbers
- .numbers() - grab all written and numeric values
- .numbers().parse() - get tokenized number phrase
- .numbers().get() - get a simple javascript number
- .numbers().json() - overloaded output with number metadata
- .numbers().toNumber() - convert 'five' to
5
- .numbers().toLocaleString() - add commas, or nicer formatting for numbers
- .numbers().toText() - convert '5' to
five
- .numbers().toOrdinal() - convert 'five' to
fifth
or5th
- .numbers().toCardinal() - convert 'fifth' to
five
or5
- .numbers().isOrdinal() - return only ordinal numbers
- .numbers().isCardinal() - return only cardinal numbers
- .numbers().isEqual(n) - return numbers with this value
- .numbers().greaterThan(min) - return numbers bigger than n
- .numbers().lessThan(max) - return numbers smaller than n
- .numbers().between(min, max) - return numbers between min and max
- .numbers().isUnit(unit) - return only numbers in the given unit, like 'km'
- .numbers().set(n) - set number to n
- .numbers().add(n) - increase number by n
- .numbers().subtract(n) - decrease number by n
- .numbers().increment() - increase number by 1
- .numbers().decrement() - decrease number by 1
- .money() - things like
'$2.50'
- .money().get() - retrieve the parsed amount(s) of money
- .money().json() - currency + number info
- .money().currency() - which currency the money is in
- .fractions() - like '2/3rds' or 'one out of five'
- .fractions().parse() - get tokenized fraction
- .fractions().get() - simple numerator, denominator data
- .fractions().json() - json method overloaded with fractions data
- .fractions().toDecimal() - '2/3' -> '0.66'
- .fractions().normalize() - 'four out of 10' -> '4/10'
- .fractions().toText() - '4/10' -> 'four tenths'
- .fractions().toPercentage() - '4/10' -> '40%'
- .percentages() - like '2.5%'
- .percentages().get() - return the percentage number / 100
- .percentages().json() - json overloaded with percentage information
- .percentages().toFraction() - '80%' -> '8/10'
Sentences
- .sentences() - return a sentence class with additional methods
- .sentences().json() - overloaded output with sentence metadata
- .sentences().toPastTense() -
he walks
->he walked
- .sentences().toPresentTense() -
he walked
->he walks
- .sentences().toFutureTense() --
he walks
->he will walk
- .sentences().toInfinitive() -- verb root-form
he walks
->he walk
- .sentences().toNegative() - -
he walks
->he didn't walk
- .sentences().isQuestion() - return questions with a
?
- .sentences().isExclamation() - return sentences with a
!
- .sentences().isStatement() - return sentences without
?
or!
Adjectives
- .adjectives() - things like
'quick'
- .adjectives().json() - get adjective metadata
- .adjectives().conjugate() - return all inflections of these adjectives
- .adjectives().adverbs() - get adverbs describing this adjective
- .adjectives().toComparative() - 'quick' -> 'quicker'
- .adjectives().toSuperlative() - 'quick' -> 'quickest'
- .adjectives().toAdverb() - 'quick' -> 'quickly'
- .adjectives().toNoun() - 'quick' -> 'quickness'
Misc selections
- .clauses() - split-up sentences into multi-term phrases
- .chunks() - split-up sentences noun-phrases and verb-phrases
- .hyphenated() - all terms connected with a hyphen or dash like
'wash-out'
- .phoneNumbers() - things like
'(939) 555-0113'
- .hashTags() - things like
'#nlp'
- .emails() - things like
'hi@compromise.cool'
- .emoticons() - things like
:)
- .emojis() - things like
💋
- .atMentions() - things like
'@nlp_compromise'
- .urls() - things like
'compromise.cool'
- .pronouns() - things like
'he'
- .conjunctions() - things like
'but'
- .prepositions() - things like
'of'
- .abbreviations() - things like
'Mrs.'
- .people() - names like 'John F. Kennedy'
- .people().json() - get person-name metadata
- .people().parse() - get person-name interpretation
- .places() - like 'Paris, France'
- .organizations() - like 'Google, Inc'
- .topics() -
people()
+places()
+organizations()
- .adverbs() - things like
'quickly'
- .adverbs().json() - get adverb metadata
- .acronyms() - things like
'FBI'
- .acronyms().strip() - remove periods from acronyms
- .acronyms().addPeriods() - add periods to acronyms
- .parentheses() - return anything inside (parentheses)
- .parentheses().strip() - remove brackets
- .possessives() - things like
"Spencer's"
- .possessives().strip() - "Spencer's" -> "Spencer"
- .quotations() - return any terms inside paired quotation marks
- .quotations().strip() - remove quotation marks
- .slashes() - return any terms grouped by slashes
- .slashes().split() - turn 'love/hate' into 'love hate'
.extend():
This library comes with a considerate, common-sense baseline for english grammar.
You're free to change, or lay-waste to any settings - which is the fun part actually.
the easiest part is just to suggest tags for any given words:
let myWords = {
kermit: 'FirstName',
fozzie: 'FirstName',
}
let doc = nlp(muppetText, myWords)
or make heavier changes with a compromise-plugin.
import nlp from 'compromise'
nlp.extend({
// add new tags
tags: {
Character: {
isA: 'Person',
notA: 'Adjective',
},
},
// add or change words in the lexicon
words: {
kermit: 'Character',
gonzo: 'Character',
},
// change inflections
irregulars: {
get: {
pastTense: 'gotten',
gerund: 'gettin',
},
},
// add new methods to compromise
api: View => {
View.prototype.kermitVoice = function () {
this.sentences().prepend('well,')
this.match('i [(am|was)]').prepend('um,')
return this
}
},
})
<div align="right">
<a href="https://docs.compromise.cool/compromise-plugins">.plugin() docs</a>
</div>
<div align="center">
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221848-11404200-ffb8-11e9-90cd-3adee8d8564f.png"/>
</div>
<!-- spacer -->
<div >
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
</div>
Docs:
gentle introduction:
- #1) Input → output
- #2) Match & transform
- #3) Making a chat-bot <!-- * **[Tutorial #4]()** - Making a plugin -->
Documentation:
Talks:
- Language as an Interface - by Spencer Kelly
- Coding Chat Bots - by KahWee Teng
- On Typing and data - by Spencer Kelly
Articles:
- Geocoding Social Conversations with NLP and JavaScript - by Microsoft
- Microservice Recipe - by Eventn
- Adventure Game Sentence Parsing with Compromise
- Building Text-Based Games - by Matt Eland
- Fun with javascript in BigQuery - by Felipe Hoffa
- Natural Language Processing... in the Browser? - by Charles Landau
Some fun Applications:
- Automated Bechdel Test - by The Guardian
- Story generation framework - by Jose Phrocca
- Tumbler blog of lists - horse-ebooks-like lists - by Michael Paulukonis
- Video Editing from Transcription - by New Theory
- Browser extension Fact-checking - by Alexander Kidd
- Siri shortcut - by Michael Byrns
- Amazon skill - by Tajddin Maghni
- Tasking Slack-bot - by Kevin Suh [see more]
Comparisons
<!-- spacer --> <div align="center"> <img height="25px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/> <hr/> </div> <div align="center"> <img height="50px" src="https://user-images.githubusercontent.com/399657/68221632-b9094000-ffb7-11e9-99e0-b48edd6cdf8a.png"/> </div> <!-- <div align="center"> <img height="50px" src="https://user-images.githubusercontent.com/399657/68221824-09809d80-ffb8-11e9-9ef0-6ed3574b0ce8.png"/> </div> -->Plugins:
These are some helpful extensions:
Dates
npm install compromise-dates
- .dates() - find dates like
June 8th
or03/03/18
- .dates().get() - simple start/end json result
- .dates().json() - overloaded output with date metadata
- .dates().format('') - convert the dates to specific formats
- .dates().toShortForm() - convert 'Wednesday' to 'Wed', etc
- .dates().toLongForm() - convert 'Feb' to 'February', etc
- .durations() -
2 weeks
or5mins
- .durations().get() - return simple json for duration
- .durations().json() - overloaded output with duration metadata
- .times() -
4:30pm
orhalf past five
- .times().get() - return simple json for times
- .times().json() - overloaded output with time metadata
Stats
npm install compromise-stats
-
.tfidf({}) - rank words by frequency and uniqueness
-
.ngrams({}) - list all repeating sub-phrases, by word-count
-
.unigrams() - n-grams with one word
-
.bigrams() - n-grams with two words
-
.trigrams() - n-grams with three words
-
.startgrams() - n-grams including the first term of a phrase
-
.endgrams() - n-grams including the last term of a phrase
-
.edgegrams() - n-grams including the first or last term of a phrase
Speech
npm install compromise-syllables
- .syllables() - split each term by its typical pronunciation
- .soundsLike() - produce a estimated pronunciation
Wikipedia
npm install compromise-wikipedia
- .wikipedia() - compressed article reconciliation
Typescript
we're committed to typescript/deno support, both in main and in the official-plugins:
import nlp from 'compromise'
import stats from 'compromise-stats'
const nlpEx = nlp.extend(stats)
nlpEx('This is type safe!').ngrams({ min: 1 })
<div align="right">
<a href="https://docs.compromise.cool/compromise-typescript">typescript docs</a>
</div>
<div >
<img height="50px" src="https://user-images.githubusercontent.com/399657/68221862-17ceb980-ffb8-11e9-87d4-7b30b6488f16.png"/>
</div>
Limitations:
-
slash-support: We currently split slashes up as different words, like we do for hyphens. so things like this don't work: <code>nlp('the koala eats/shoots/leaves').has('koala leaves') //false</code>
-
inter-sentence match: By default, sentences are the top-level abstraction. Inter-sentence, or multi-sentence matches aren't supported without <a href="https://github.com/spencermountain/compromise/tree/master/plugins/paragraphs">a plugin</a>: <code>nlp("that's it. Back to Winnipeg!").has('it back')//false</code>
-
nested match syntax: the <s>danger</s> beauty of regex is that you can recurse indefinitely. Our match syntax is much weaker. Things like this are not <i>(yet)</i> possible: <code>doc.match('(modern (major|minor))? general')</code> complex matches must be achieved with successive .match() statements.
-
dependency parsing: Proper sentence transformation requires understanding the syntax tree of a sentence, which we don't currently do. We should! Help wanted with this.
FAQ
<ul align="left"> <p> <details> <summary>☂️ Isn't javascript too...</summary> <p></p> <ul> yeah it is! <br/> it wasn't built to compete with NLTK, and may not fit every project. <br/> string processing is synchronous too, and parallelizing node processes is weird. <br/> See <a href="https://observablehq.com/@spencermountain/compromise-performance">here</a> for information about speed & performance, and <a href="https://observablehq.com/@spencermountain/compromise-justification">here</a> for project motivations </ul> <p></p> </details> </p> <p> <details> <summary>💃 Can it run on my arduino-watch?</summary> <p></p> <ul> Only if it's water-proof! <br/> Read <a href="https://observablehq.com/@spencermountain/compromise-quickstart">quick start</a> for running compromise in workers, mobile apps, and all sorts of funny environments. </ul> <p></p> </details> </p> <p> <details> <summary>🌎 Compromise in other Languages?</summary> <p></p> <ul> we've got work-in-progress forks for <a href="https://github.com/nlp-compromise/de-compromise">German</a>, <a href="https://github.com/nlp-compromise/fr-compromise">French</a>, <a href="https://github.com/nlp-compromise/es-compromise">Spanish</a>, and <a href="https://github.com/nlp-compromise/it-compromise">Italian</a> in the same philosophy. <br/> and need some help. </ul> <p></p> </details> </p> <p> <details> <summary>✨ Partial builds?</summary> <p></p> <ul> we do offer a <a href="https://observablehq.com/@spencermountain/compromise-filesize">tokenize-only</a> build, which has the POS-tagger pulled-out. <br/> but otherwise, compromise isn't easily tree-shaken. <br/> the tagging methods are competitive, and greedy, so it's not recommended to pull things out. <br/> Note that without a full POS-tagging, the contraction-parser won't work perfectly. (<i>(spencer's cool)</i> vs. <i>(spencer's house)</i>) <br/> It's recommended to run the library fully. </ul> <p></p> </details> </p> </ul> <div align="center"> <img src="https://user-images.githubusercontent.com/399657/68221731-e8b84800-ffb7-11e9-8453-6395e0e903fa.png"/> </div>See Also:
-
en-pos - very clever javascript pos-tagger by Alex Corvi
-
naturalNode - fancier statistical nlp in javascript
-
winkJS - POS-tagger, tokenizer, machine-learning in javascript
-
dariusk/pos-js - fastTag fork in javascript
-
compendium-js - POS and sentiment analysis in javascript
-
nodeBox linguistics - conjugation, inflection in javascript
-
reText - very impressive text utilities in javascript
-
superScript - conversation engine in js
-
jsPos - javascript build of the time-tested Brill-tagger
-
spaCy - speedy, multilingual tagger in C/python
-
Prose - quick tagger in Go by Joseph Kato
-
TextBlob - python tagger
<b>MIT</b>