Awesome
SAM as the Guide: Mastering Pseudo-Label Refinement in Semi-Supervised Referring Expression Segmentation
Welcome you to the official repository for our method presented in "SAM as the Guide: Mastering Pseudo-Label Refinement in Semi-Supervised Referring Expression Segmentation."
Setting Up
Package Dependencies
- Create a new Conda environment with Python 3.7 then activate it:
conda create -n SemiRES python==3.7
conda activate SemiRES
- Install PyTorch:
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
- Install the packages in
requirements.txt
viapip
:
pip install -r requirements.txt
- cd segment-anything-third-party && pip install -e . && cd ..
Datasets
-
Follow instructions in the
./refer
directory to set up subdirectories and download annotations. This directory is a git clone (minus two data files that we do not need) from the refer public API. -
Download images from COCO. Please use the first downloading link 2014 Train images [83K/13GB], and extract the downloaded
train_2014.zip
file to./refer/data/images/mscoco/images
. -
Prepare the annotations. For example, to generate the annotations for RefCOCO, you can run the code:
python data_process.py --data_root ./refer/data --output_dir . --dataset refcoco --split unc --generate_mask
- run split_dataset_select.py to generate the annotations of 1% RefCOCO semi-supervised setting.
python split_dataset_select.py --dataset refcoco --save-dir ./anns/refcoco/ --pick-percent 0.01
At this point the directory SemiRES should look like:
SemiRES
|-- anns
|-- refcoco
|--masks
|--refcoco_1%_image.json
|--refcoco_99%_image.json
|-- refcoco.json
Generate SAM mask proposal
put SAM pretrained model https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth into ./segment-anything
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 51240 segment-anything-third-party/sam-refcoco/segment_anything_mode.py --dataset refcoco --annotation_path ./anns/refcoco.json
The Initialization Weights for Training
- Create the
./pretrained_weights
directory where we will be storing the weights.
mkdir ./pretrained_weights
- Download pre-trained classification weights of
the Swin Transformer,
and put the
pth
file in./pretrained_weights
. These weights are needed for training to initialize the model.
Training
- Train supervised learning Baseline
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 54321 train.py --model lavt --dataset refcoco --model_id refcoco --output-dir ./output/1%/refcoco/sup --batch-size 2 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 --sup_percent 1
- Train SemiRES
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node 4 --master_port 14278 train_semi_CPI.py --model lavt --dataset refcoco --model_id refcoco --sup_percent 1 --unsup_percent 99 --output-dir ./output/1%/refcoco/cpi --batch-size 3 --lr 0.00005 --wd 1e-2 --swin_type base --pretrained_swin_weights pretrained_weights/swin_base_patch4_window12_384_22k.pth --epochs 40 --img_size 480 --burn_int_ckpt ./output/1%/refcoco/sup/model_best_refcoco.pth
Note that train_semi_CPI is not the code for results of Table 1
Testing
Test results on RefCOCO
python test.py --model lavt --swin_type base --dataset refcoco --split val --resume ./output/1%/refcoco/model_best_refcoco.pth --workers 2 --ddp_trained_weights --window12 --img_size 480 --batch-size 1