Awesome
Masksembles for Uncertainty Estimation
<!-- --- Official implementation of Masksembles approach from the paper "Masksembles for Uncertainty Estimation" by Nikita Durasov, Timur Bagautdinov, Pierre Baque, Pascal Fua (CVPR 2021). --- -->Project Page | Paper | Video Explanation
<!-- <p align="center"> <img style="border-radius: 30px" src="/images/mask_logo.png" /> </p>--> <!-- <p align="center"> <img style="border-radius: 30px" src="https://raw.githubusercontent.com/nikitadurasov/masksembles/main/images/transition.gif" /> </p> -->Why Masksembles?
Uncertainty Estimation is one of the most important and critical tasks in the area of modern neural networks and deep learning. There is a long list of potential applications of uncertainty: safety-critical applications, active learning, domain adaptation, reinforcement learning and etc.
Masksembles is a simple and easy-to-use drop-in method with performance on par with Deep Ensembles at a fraction of the cost. It makes almost no changes in your original model and requires only to add special intermediate layers.
Installation
To install this package, use:
pip install git+http://github.com/nikitadurasov/masksembles
In addition, Masksembles requires installing at least one of the backends: torch or tensorflow2 / keras. Please follow official installation instructions for torch or tensorflow accordingly.
Usage
This package provides implementations for Masksembles{1|2|3}D
layers in masksembles.{torch|keras}
where {1|2|3}
refers to dimensionality of input tensors (1-, 2- and 3-dimensional
accordingly).
Masksembles1D
: works with 1-dim inputs,[B, C]
shaped tensorsMasksembles2D
: works with 2-dim inputs,[B, H, W, C]
(keras) or[B, C, H, W]
(torch) shaped tensorsMasksembles3D
: TBD
In a Nutshell, Masksembles applies binary masks to inputs via multiplying them both channel-wise. For more efficient
implementation we've followed approach similar to this one. Therefore, after inference
outputs[:B // N]
- stores results for the first submodel, outputs[B // N : 2 * B // N]
- for the second and etc.
Torch
import torch
from masksembles.torch import Masksembles1D
layer = Masksembles1D(10, 4, 2.)
layer(torch.ones([4, 10]))
tensor([[0., 1., 0., 0., 1., 0., 1., 1., 1., 1.],
[0., 0., 1., 1., 1., 1., 0., 0., 1., 1.],
[1., 0., 1., 1., 0., 0., 1., 0., 1., 1.],
[1., 0., 0., 1., 1., 1., 0., 1., 1., 0.]], dtype=torch.float64)
Tensorflow / Keras
import tensorflow as tf
from masksembles.keras import Masksembles1D
layer = Masksembles1D(4, 2.)
layer(tf.ones([4, 10]))
<tf.Tensor: shape=(4, 10), dtype=float32, numpy=
array([[0., 1., 1., 0., 1., 1., 1., 0., 1., 0.],
[0., 1., 0., 1., 1., 0., 1., 1., 0., 1.],
[1., 1., 1., 1., 0., 0., 1., 0., 0., 1.],
[1., 0., 0., 1., 0., 1., 1., 0., 1., 1.]], dtype=float32)>
Model example
import tensorflow as tf
from masksembles.keras import Masksembles1D, Masksembles2D
model = keras.Sequential(
[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="elu"),
Masksembles2D(4, 2.0),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="elu"),
Masksembles2D(4, 2.0),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
Masksembles1D(4, 2.),
layers.Dense(num_classes, activation="softmax"),
]
)
Citation
If you found this work useful for your projects, please don't forget to cite it.
@inproceedings{Durasov21,
author = {N. Durasov and T. Bagautdinov and P. Baque and P. Fua},
title = {{Masksembles for Uncertainty Estimation}},
booktitle = CVPR,
year = 2021
}