Awesome
NEW related work!!
Cross-Spectral Local Descriptors via Quadruplet Network
Learning cross-spectral similarity measures with deep convolutional neural networks
Bibtex
@inproceedings{Aguilera_cvprw_2016,
organization = { IEEE },
year = { 2016 },
pages = { 9 },
month = { Jun },
location = { Las vegas, USA },
booktitle = { The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops },
author = { Cristhian A. Aguilera and Francisco J. Aguilera and Angel D. Sappa and Cristhian Aguilera and Ricardo Toledo },
title = { Learning cross-spectral similarity measures with deep convolutional neural networks },
}
Instructions
First install the torch framework and cudnn
Datasets
Nirscenes patches
Follow the following steps to generate the dataset
-
Download gt csv
cd datasets ./download_nirscenes_csv.sh
-
Download the original nirscenes dataset link
-
Decompress the dataset on /datasets/nirscenes
-
Convert the images in each folder to ppm (Torch doesn't support tiff). Use your favorite software
-
Install csvigo
luarocks install csvigo
-
Use our script to generate the dataset
cd utils th nirscenes_to_t7.lua
The t7 dataset is stored in datasets/nirscenes
VIS-LWIR ICIP2015
- Download the dataset
cd datasets
./download_icip_dataset.sh
It's easier if you are the owner of the dataset :)
Eval
Nirscenes eval (cpu and cuda support)
Evaluation code can be found in the eval folder. To eval one sequence:
-
You have to generate the nirscenes patch dataset
-
Install xlua
luarocks install xlua
-
Run
cd eval th nirscenes_eval.lua -seq_path ../dataset/nirscenes/[sequence].t7 -net .. [trained network]
For example, to eval the field sequence using the 2ch_country network
bash th nirscenes_eval.lua -seq_path ../dataset/nirscenes/field.t7 -net ../trained_networks/2ch_country.net -net_type 2ch
For more options, run
bash th nirscenes_eval -h
VIS-LWIR eval (ICIP2015) (just cuda support)
-
You have to download the dataset first
-
Run
cd eval th icip2015_eval.lua -dataset_path ../nirscenes/icip2015/ -net [trained network]
For example. To eval 2ch_country
```bash
cd eval
th icip2015_eval.lua -dataset_path ../nirscenes/icip2015/ -net ../trained_networks/2ch_country.t7
```
Training
-
Install penlight
luarocks install penlight
-
Train a network
cd train th nirscenes_doall.lua -training_sequences [country|field|...] -net [2ch|siam|psiam]
For example, train a 2ch network using the country sequence
cd train
th nirscenes_doall.lua -training_sequences country -net 2ch
Results will be stored in the results folder.For more options, run
th nirscenes_doall.lua -h
Note The training code is different from the one used in the article. This new version is much faster.