Home

Awesome

<div align="center"> <img src="https://raw.githubusercontent.com/neptune-ai/neptune-client/assets/readme/Github-cover.png" width="1500" /> <h1>neptune.ai</h1> </div> <div align="center"> <a href="https://docs.neptune.ai/usage/quickstart/">Quickstart</a> <span>&nbsp;&nbsp;•&nbsp;&nbsp;</span> <a href="https://neptune.ai/">Website</a> <span>&nbsp;&nbsp;•&nbsp;&nbsp;</span> <a href="https://docs.neptune.ai/">Docs</a> <span>&nbsp;&nbsp;•&nbsp;&nbsp;</span> <a href="https://github.com/neptune-ai/examples">Examples</a> <span>&nbsp;&nbsp;•&nbsp;&nbsp;</span> <a href="https://neptune.ai/resources">Resource center</a> <span>&nbsp;&nbsp;•&nbsp;&nbsp;</span> <a href="https://neptune.ai/blog">Blog</a> &nbsp; <hr /> </div>

What is neptune.ai?

Neptune is the most scalable experiment tracker for teams that train foundation models.<br> <br> Log millions of runs, view and compare them all in seconds. Effortlessly monitor and visualize months-long model training with multiple steps and branches.<br> <br> Deploy Neptune on your infra from day one, track 100% of your metadata and get to the next big AI breakthrough faster.<br>

<a href="https://www.youtube.com/watch?v=bQzgnqM5J6U"><b>Watch a 3min explainer video →</b></a>  

<a href="https://neptune.ai/demo"><b>Watch a 20min product demo →</b></a>  

<a href="https://app.neptune.ai/o/showcase/org/onboarding-project/runs/table?viewId=98f66b32-2279-4b73-8210-863021c440ac&product_tour_id=444083"><b>Play with a live example project in the Neptune app →</b></a>  

Getting started

Step 1: Create a free account

Step 2: Install the Neptune client library

pip install neptune

Step 3: Add an experiment tracking snippet to your code

import neptune

run = neptune.init_run(project="workspace-name/project-name")
run["parameters"] = {"lr": 0.1, "dropout": 0.4}
run["test_accuracy"] = 0.84

Open in Colab  

 

Core features

Log and display

Add a snippet to any step of your ML pipeline once. Decide what and how you want to log. Run a million times.

 

<div align="center"> <img border="0" alt="all metadata metrics" src="https://neptune.ai/wp-content/uploads/2023/06/log_metrics.gif" width="600"> </a> </div> &nbsp;

 

Organize experiments

Organize logs in a fully customizable nested structure. Display model metadata in user-defined dashboard templates.

 

<div align="center"> <img border="0" alt="organize dashboards" src="https://neptune.ai/wp-content/uploads/2023/06/organize_custom_dashboards.gif" width="600"> </a> </div> &nbsp;

 

Compare results

Visualize training live in the neptune.ai web app. See how different parameters and configs affect the results. Optimize models quicker.

 

<div align="center"> <img border="0" alt="compare, search, filter" src="https://neptune.ai/wp-content/uploads/2023/06/organize_search_sort_filter.gif" width="600"> </a> </div> &nbsp;

 

Version models

Version, review, and access production-ready models and metadata associated with them in a single place.

 

Share results

Have a single place where your team can see the results and access all models and experiments.

 

<div align="center"> <img border="0" alt="share persistent link" src="https://neptune.ai/wp-content/uploads/2023/06/share_send_link.gif" width="600"> </a> </div> &nbsp;

 

Integrate with any MLOps stack

neptune.ai integrates with <a href="https://docs.neptune.ai/integrations/"><b>25+ frameworks:</b></a> PyTorch, Lightning, TensorFlow/Keras, LightGBM, scikit-learn, XGBoost, Optuna, Kedro, 🤗 Transformers, fastai, Prophet, detectron2, Airflow, and more.

<img src="https://raw.githubusercontent.com/neptune-ai/neptune-client/assets/readme/Pytorch-lightning-logo.png" width="60" /> <br> <br> PyTorch Lightning

Example:

from pytorch_lightning import Trainer
from lightning.pytorch.loggers import NeptuneLogger

# Create NeptuneLogger instance
from neptune import ANONYMOUS_API_TOKEN

neptune_logger = NeptuneLogger(
    api_key=ANONYMOUS_API_TOKEN,
    project="common/pytorch-lightning-integration",
    tags=["training", "resnet"],  # optional
)

# Pass the logger to the Trainer
trainer = Trainer(max_epochs=10, logger=neptune_logger)

# Run the Trainer
trainer.fit(my_model, my_dataloader)

neptune-pl  

github-code jupyter-code Open In Colab <img src="https://img.shields.io/badge/docs-PyTorch%20Lightning-yellow">  

 

neptune.ai is trusted by great companies

<div align="center"> <img src="https://raw.githubusercontent.com/neptune-ai/neptune-client/assets/readme/github-customers.png" width="1500" /> </div> &nbsp;

Read how various customers use Neptune to <a href="https://neptune.ai/customers">improve their workflow</a>.  

 

Support

If you get stuck or simply want to talk to us about something, here are your options:

 

People behind

Created with :heart: by the neptune.ai team