Awesome
EMDS
This repository provides the implemention for the paper Equivariant Score-based Generative Diffusion Framework for 3D Molecules.
Please cite our paper if our datasets or code are helpful to you ~ 😊
Requirements
- Python 3.7
- pytorch 1.12.0
- rdkit 2022.3.5
- pyparsing 2.4.7
Dataset
Running Experiments
Preparations
To preprocess the 3D molecular dataset QM9 for training model, run the following command:
python data/preprocess_3d.py
python data/split_generators.py
Configs
The configurations are provided on the config/ directory in YAML format.
Training
CUDA_VISIBLE_DEVICES=0 python main.py --type train --config train --seed 42
Generation and Evaluation
CUDA_VISIBLE_DEVICES=0 python main.py --type sample --config sample
Acknowledgements
EMDS builds upon the source code from the projects GDSS, G-SphereNet and EDM.
We thank their contributors and maintainers!
Citation
Please cite our paper if our datasets or code are helpful to you.
H. Zhang, Y. Liu, X. Liu, C. Wang, and M. Guo, "Equivariant Score-based Generative Diffusion Framework for 3D Molecules", BMC Bioinformatics 25, 203 (2024), DOI: 10.1186/s12859-024-05810-w