Awesome
<h2 align="center"> <a href="https://github.com/nazmul-karim170/UNICON-Noisy-Label">UNICON: Combating Label Noise Through Uniform Selection and Contrastive Learning</a></h2> <h5 align="center"> If you like our project, please give us a star ⭐ on GitHub for the latest update. </h2> <h5 align="center"> </h5>Paper
Training Pipeline
UNICON Framework
<!-- ![Teaser](./Figure/Teaser.png) -->Installation Guide
-
Create a conda environment
conda create -n unicon conda activate unicon
-
After creating a virtual environment, install the required packages
pip install -r requirements.txt
Download the Datasets
-
For adding Synthetic Noise, download these datasets
- <a href="https://www.kaggle.com/c/cifar-10/data">CIFAR10</a>
- <a href="https://www.kaggle.com/datasets/melikechan/cifar100">CIFAR100</a>
- <a href="https://www.kaggle.com/datasets/nikhilshingadiya/tinyimagenet200">Tiny-ImageNet</a>
-
For Datasets with Real-World Label Noise
- <a href="https://github.com/Cysu/noisy_label">Clothing1M</a> (Please contact tong.xiao.work[at]gmail[dot]com to get the download link)
- <a href="https://data.vision.ee.ethz.ch/cvl/webvision/dataset2017.html">WebVision</a>
UNICON Training
-
Example run (CIFAR10 with 50% symmetric noise)
python Train_cifar.py --dataset cifar10 --num_class 10 --data_path ./data/cifar10 --noise_mode 'sym' --r 0.5
-
Example run (CIFAR100 with 90% symmetric noise)
python Train_cifar.py --dataset cifar100 --num_class 100 --data_path ./data/cifar100 --noise_mode 'sym' --r 0.9
This will throw an error as downloaded files will not be in the proper folder. That is why they must be manually moved to the "data_path".
-
Example Run (TinyImageNet with 50% symmetric noise)
python Train_TinyImageNet.py --ratio 0.5
-
Example run (Clothing1M)
python Train_clothing1M.py --batch_size 32 --num_epochs 200
-
Example run (Webvision)
python Train_webvision.py
Reference
If you have any questions, do not hesitate to contact nazmul.karim170@gmail.com
Also, if you find our work useful please consider citing our work:
@InProceedings{Karim_2022_CVPR,
author = {Karim, Nazmul and Rizve, Mamshad Nayeem and Rahnavard, Nazanin and Mian, Ajmal and Shah, Mubarak},
title = {UniCon: Combating Label Noise Through Uniform Selection and Contrastive Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {9676-9686}
}